ROBUST SEMI-EXPLICIT MODEL PREDICTIVE
CONTROL FOR HYBRID AUTOMATA

Yan Pang*, Hao Xia*, Michael P. Spathopoulos *

* Unwversity of Strathclyde, Glasgow, G1 1QF, U.K.
{yan.pang, hao.zia, michael.spathopoulos} @Qstrath.ac.uk

Abstract: In this paper we propose an on-line design technique for the target control
problem of hybrid automata. First, we compute off-line the shortest path, which has
the minimum discrete cost, from an initial state to the given target set. Next, we
derive a controller which successfully drives the system from the initial state to the
target set while minimizing a cost function. The (robust) model predictive control
(MPC) technique is used when the current state is not within a guard set, otherwise
the (robust) mixed-integer predictive control (MIPC) technique is employed. An on-
line, semi-explicit control algorithm is derived by combining the two techniques and
applied on a high-speed and energy-saving control problem of the CPU processing.

1. INTRODUCTION

In this paper, a computationally efficient solu-
tion is presented for the supervisory target con-
trol of hybrid automata (Trontis and Spathopou-
los, 2003). The controller design can be considered
as a two stage optimization. At the first stage, for
any given initial state, we solve a high priority
optimization problem which minimizes the total
discrete transition cost to the target set. This
is cast as a reachability problem from a given
initial set to a target set. With this reachability
problem solved, the initial set can be partitioned
into a number of disjoint subsets, and any state
contained in a given subset will have the same
discrete switching path (weighted shortest path)
of the minimized discrete transition cost. At the
second stage, for a given initial state, a hybrid
controller can be derived based on the results
from stage one. The design is formulated as a
low priority optimization problem which min-
imizes a continuous transition performance index
subject to the constraint that the weighted short-
est path will be followed. Due to the constraints
imposed on the system state and control input,
a constrained optimization needs to be solved. A
hybrid controller is calculated on-line using model
predictive control (MPC) techniques.

Considering the high computational complex-
ity of the MPC on-line algorithm presented in
(Bemporad et al., 1999), we formulate a semi-
explicit(sub-optimal) method that reduces the
computational burden. For this, we remove the on-
line choices for the switching part, by selecting the
shortest discrete path offline. It is then shown that

the shortest path can be used to derive a semi-
explicit algorithm for hybrid automata. The de-
sign proposed in this paper is computationally ef-
ficient due to the fact that the global optimization
problem has been decomposed into several consec-
utive local optimization problems. However, the
price to be paid for the computational saving is
that the result is sub-optimal.

The rest of the paper is organized as follows. In
the next section the basic definitions and concepts
related to hybrid automata are given. The MPC
and MIPC problems are stated and addressed in
section 3, In section 4, a semi-explicit algorithm
for the problem stated is derived. In section 5,
we discuss the effect of bounded disturbances and
how the nominal design can be applied in the
presence of these disturbances. A CPU application
of the algorithm is given in section 6.

2. MODELLING AND PROBLEM
FORMULATION

2.1 Hybrid automaton

The discrete-time hybrid automaton used in this
paper is defined as follows:

Definition 1. (Pang and Spathopoulos, 2005), A
linear discrete-time hybrid automaton is
a collection A = (Q, X, f,U,D, X, Inv,E,G,c)
where Q = {q1,...,qn} is a set of discrete states;
X C R” is the continuous state space; f : QQ x X X
U — 2% assigns every discrete state a Lipschitz
continuous evolution function which is described
by the linear difference equation (1):

z(t+1) = Agz(t) + Byu(t) + d(t) (1)



The control input u(t) € U and disturbance d(t) €
D that both contain the origin as an interior
point. ¥ is the set of discrete inputs; let € € X
denote the situation where no discrete command
is issued; Inv : Q — 2% assigns each ¢ € Q an
invariant set; £ C @ X X X @ is a collection of
discrete transitions; G : E — 2% assigns each
e = (q,0,q) € E aguard; ¢ : (Q x Q) — RT
assigns a positive cost to each transition.

All the sets involved above are considered as
polytopes. The guard set Gy 4 (o) is the subset
of the state space where the system can switch
from location g to ¢’. The moment at which the
transition takes place is a design variable. An
external system (controller) orders an appropriate
discrete input when a certain condition, subject to
design, is satisfied.

Definition 2. A hybrid controller is a map: C :
QxX — 2%*U_The controller issues both discrete
inputs Cy(q(t), z(t)) € 2% and continuous inputs
Ce(q(t), x(t)) € 2Y.

2.2 Problem Statement

Let IT = {r} denote the set of all discrete paths
from qg to gp:

M= {n30,3INeN,j=0,...N—1,qn = qr :
ej = (¢, 0,qj+1) € EAT = (qo, -, qn)}
Essentially, the discrete paths are derived by ab-
stracting the continuous dynamics away i.e. con-
sidering reachability on the discrete graph. Let
I(m) be the number of discrete transitions in a
path 7 € II. Therefore, 7 = (¢, T, ...,ql”(w)), with
a6 = qo, qzzﬁ) = gr and the cost of path 7 is

defined as: ¢(7) = Zi(:ﬂl) c(q_1,4qr). This function
represents the transition cost along 7 from an ini-

tial state (qo, o) to a final state (¢(ts), z(ty)) € F.

Given a hybrid automaton A and a target set F' =
(qgr, XF), for a state (qo, xo), the control problem
defined here can be cast as follows: Design the
sequence of control inputs such that all trajec-
tories will reach the target set while minimizing
associated cost functions. This is formulated in
two steps:

(1) find the shortest discrete path with the min-
imal discrete cost ¢(m);

(2) compute optimal (continuous and discrete)
control inputs for each discrete state (loca-
tion) on-line. Here optimality is addressed
locally and therefore the overall design is
suboptimal.

For the first step, we utilize a generalization of
Dijkstra’s shortest path algorithm on weighted
graphs (Martins et al., 1998), and find the shortest
path with the minimum cost ¢(7) from gy to gp.

For the second step, if the current state is not
in the desired guard set, then the standard MPC
method is employed to drive the current state to
the guard set where the system may be switched
to the next discrete state along the path 7. On
the other hand, if the current state has already
reached the guard set, then the MIPC method is
used to drive the current state to the next guard
set along the path 7. This procedure is repeated
until the target set is reached without violating
any constraint.

3. MPC AND MIPC PROBLEMS

In this section, it is assumed that there is no
additive disturbance in linear discrete-time model
defined in equation 1.

3.1 The Model Predictive Control (MPC) Problem

For the shortest path =, the aim is to com-
pute a suboptimal controller which successfully
drives the system from (qo, zo) into (¢r, Xr). Let
m = (q¢f, 4T, ...,q{EW)) be the path, and G7, . =
{z|CTx < hT} be the transition guards from
discrete state ¢f to ¢f,, withi =0,1,...,I(7) — 1,
where C7 € R"*" AT € R". Also, let Xp =
{z|Crz < hp}, with Cp € R"*" hp € R".
Given a state x(t) € Inv(ql), we define the fol-
lowing optimal control problem:

Problem 1

First define the following cost function:

N-1
Ji(UN N a(t) = wiell 2t + NJt) = T [l +) w2
k=0

N-1
la(t + E[E) = Ti llp +) wse || ult + Klt) = ue
k=0

The factors wy,ws,ws € R are appropriate weights
for the contributions of these three terms. Also,
UNTY = [T (t+0t), uT (t + 1|t), ..., u” (t + N —
1|t)]T. At each time ¢, x(t + k[t) and u(t + k|t)
denote the predicted state and input at time ¢+ k.
lx(t + k|t) — T;||, describes the distance between
the current state and (the nearest boundary) of
the guard (target) set:
n — {G;,Qiﬂ Zf Z € {O’
Xp if i=1(r
with a norm || - ||p, p = 00,2, 1. ||u(t + k|t) — uc|lp
contains the deviation of u(t+k|t) from a reference
input u.. N is the prediction horizon.

1,..,0(m) =1}
) (2)

The finite-time optimal control problem is defined
as:

min J;(UN7Y, ()

UN71

z(t+k+1t) =

u(t+klt)eU

x(t + k|t) € Inv(q])

t

s.t.



The main idea of predictive control is to use
the model of the plant to predict the future
evolution of the system. Based on this prediction,
at each time step t the controller selects a sequence
of future command inputs through an on-line
optimization procedure, which aims at minimizing
the distance from the current state to the target
set, and enforces fulfillment of the constraints.
Only the first sample of the optimal sequence is
actually applied to the plant at time ¢. At time
t 4+ 1, a new sequence is evaluated to replace the
previous one. This on-line “re-planning” provides
the desired feedback control feature.

3.2 The Mized Integer Predictive Control (MIPC)
Problem

Once the state z(t) is driven to a guard set G, .. |
using MPC, it is up to the discrete controller to
decide whether to let it idle in state ¢; or switch
to the next state g;4+1. To design the local opti-
mal discrete controller, the logical decisions and
the transition structure of A are expressed using
relations of binary variables, and the solution is
then determined by Mixed Integer Programming

(MIP).

The dynamics at t are determined by the cur-
rent discrete state and input. Let |@| denote the
number of discrete states of A. We introduce |Q)|
binary variables defined as

o)l if q(t) =g ,
Ailt) = {O otherwise 1€ {llQl}
It is clear that:

Ql

Z Ai(t) =1 (3)

™

Under the assumption that the guard set Gg, ;. .,
has no intersection with another guard set G7

95957

j # i+ 1 along the path, we have for state
z(t) € Gy, 4., that:

Ai(t) + Aiga(t) =1 (4)

where \;(t) and A;11(t) are the binary variables
associated with the discrete states ¢ and qf,
respectively.

The following optimal control problem is solved
for the state z(t) € G7, ., which can be observed
by the system.

Problem 2

Define the cost function

TN () = wiella(t + N'[t) ~Tiga [l +wo-
N'—1 N'—1

D et + Kle)=Tially w5y ult + ki) = uell,
k=0 k=0

where N’ is the prediction horizon and consider
the finite-time optimal control problem

min J/(UN' 71, (1)) (5)
UN’—l

t

ot + &+ 1[t) = Ni(t + k[t) [Agrz(t + k[t)+
Bopu(t + k[t) + cqr] + A1 (E + k[t)[Aqr,
o(t+ k[t) + Byr, u(t + k[t) + cqr, ]

u(t + kjt) e U

o(t 4 Klt) € G,

i (t 4 E|t), Nip1(t + k[t) € {0,1}

i(t +k[t) + XN (E+ k) =1

it +k[t) = Ni(t+E—1[t) <0

s.t

(6)
It should be noted that the set T;41 is different
for the set T; in problem 1 as:

if ie{0,1,.

(m) =2}
if i=1(m)—1

GT
EJrl — qi+1,9i42
Xr

The constraint A;(t + k[t) — X\;(t + &k — 1|t) < 0 for
all k = 1,..., N’ in the last line of equation (6)
guarantees that there is only one jump from ¢ to
g7, ,. For any | = 0,...,N', if X\;(t +[t) = 0, the
system is switched to the next discrete location
qf,, since it is impossible to have another I’ > [
such that A\;(t +U'|t) = 1. 0.
The computational tools of MPC are linear pro-
gramming (LP) or quadratic programing (QP),
while the tools for MIPC are mixed integer linear
programming (MILP) or mixed integer quadratic
programming (MIQP), see (Pang et al., 2005) for
more details.

4. A SEMI-EXPLICIT ALGORITHM

Given a discrete path ™ = (qo,q1, ..., i(x) = qr)
and an initial state (go,2o), the following online
predictive control algorithm derives a controlled
trajectory from (go,xo) to the target set :

Algorithm 1. (A semi-explicit algorithm).

1.t=0,i=0,2(0) = zo;
2. while ¢ < (7)) — 1 do;

3. if z(t) € Ggiqiﬂ;

4. solve problem 2;

5. if M) =1Az(t+1) GG;%H;

6. C*(q(t),z(t)) = (e,ur(0)), t := 1t + 1;
go to 3

7. else

8. C*(a(t), 2(t)) = (0541, u7 (0));
t:=t+1;1:=14+1;goto 2

9. end

10. else

11.  solve problem 1;C*(q(t), z(t)) =(e, u;(0));
t:=t+1;goto3
12. end while
13. while z(t) ¢ Xr do;
14. solve problem 1;C*(q(t), xz(t)) = (&, u;(0));
ti=t+1
15. end while

The above algorithm contains two while loops.
The first while loop stops when the system reaches
the last discrete state gg of the path. The second



while loop terminates when x(t) € Xp. In the
first while, the algorithm first checks whether the
continuous state z(t) is in the guard set or not. If
yes, it solves the MIPC problem 2. The solution
of problem 2. provides both the continuous and
discrete inputs. When a discrete switching occurs,
the index i is increased by one and the system
evolves in the new discrete state. On the other
hand, if the continuous state is outside the guard
set, the algorithm solves the MPC problem 1 and
calculates the continuous input which optimally
drives the system to the guard (target) set.

5. ROBUST MPC AND MIPC

In the previous sections, it is assumed that there is
no additive disturbance in the continuous dynam-
ics. Since MPC and MIPC are both receding hori-
zon state feedback laws, the inherent robustness of
deterministic MPC and MIPC applied to nominal
system is usually enough if the disturbance is
sufficiently small (Scokaert and Rawlings, 1995).
On the other hand, it is well known that the
action of a bounded disturbance can destabilize
a predictive controller which is stabilized for the
nominal case. A straightforward solution is to
treat the disturbance explicitly and carry out a
min-max optimization as proposed in (Scokaert
and Mayne, 1998). However, there are two ma-
jor drawbacks associated with this “worst-case”
formulation. The first is that the resulting opti-
mization procedure is computationally expensive
and the second is that the optimizing performance
for the “worst-case” disturbance represents an
unrealistic scenario and may yield poor perfor-
mance whenever the disturbance realization gets
close to zero. For the above reasons, a more sen-
sible approach is to minimize the nominal per-
formance index while imposing constraint fulfill-
ment for all admissible disturbances. This idea has
been pursued in (Chisci et al., 2001; Langson et
al., 2004; Mayne et al., 2005). In this paper, we
will adapt a similar strategy, so that all results
introduced before can be used.

Feedback model predictive control in which the
decision variable is a policy ¢, was advocated in
(Lee and Yu.Z., 2005; Scokaert and Mayne, 1998).
The policy is a sequence {1 (), p1(+), .-, pn—-1(-)}
of control laws. Determination of a control policy
is usually prohibitively difficult, as first introduced
in (Lee and Kouvaritakis, 2000). Thus, a sub-
optimal control policy in which p;(z) = v; + Kz
will be employed here. This state feedback law
transforms the decision variable from a policy to
a sequence of control actions {vg,v1,...,vn_1}.
The inherent feedback via the time-invariant K
reduces the spread of trajectories due to distur-
bance and it is often very effective.

Before introducing the main result of this section,
a few set notations need to be introduced. Given
two sets A, B, then A®B = {a+b|a € A, b<c B}
(set addition) and A© B 2 {a | a® B C A} (set
subtraction).

For the discrete time system defined in (1), its
corresponding nominal model is defined by

z(t +1) = Az(t) + Bu(t) (7)
For the nominal model (7) and an initial condition
To, let 1 = {4y, ..., un_1} be the optimal control
sequence for the cost function. By applying u
to (7), the optimal nominal state trajectory can
be obtained as X = {Zo,Z1,...,Zn). For the
perturbed plant (1), the feedback policy ¢ is
defined as:

(@, T, ;) =

u;+K(r—z;) = (u; — Kz;) + Kz,
i=0,1,...,N—1 (8)
Suppose the sequences {z;} and {u;} are the so-

lutions of the perturbed system (1) with feedback
policy ¢, i.e. {z;} and {u;} satisfy:

w; = ; + K(z(i) — 7(3))

with initial condition 2y = Zy. A simple inductive
argument yields

i—1
T; € T; + Z AJKD
j=0
i—1
§=0
with Ax = A+ BK and ) denoting set addition.
Clearly, the feasibility of the feedback policy c
depends on whether z; and u; satisfy the original
state and control constraint respectively. Based on
equations (9) and (10), with initial state zo € X,
in order to guarantee the feasibility of ¢, (Z, @) has
to satisfy tighter constraints:

i=1,...,N (9)

i=1,...,N—1(10)

i—1
7€ Inv’(q)© Y AjD,i=1,...,N11)
7=0
i—1
ug €U, 4, eUSK Y AlDi=1,...,N -112)
7=0

From the above two equations, it is clear that
the state feedback gain K should be chosen such
that 3>\—g A% D, KY\—qAYD, i=1,...,N—
1 are minimized. A computational technique for
the minimum over approximation of these sets has
been presented in (Rakovic et al., 2005).

By replacing the original state and control con-
straints with tighter constraints defined in (11)
and (12), it is straightforward to re-formulate the
MPC and MIPC problems defined above.
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Fig. 1. The CPU model
6. CPU PROCESSING CONTROL

In this section, the above results are applied on
the CPU processing control problem (Azuma and
Imura, 2003). In order to realize the high-speed
and energy-saving computing more effectively, we
model the system as a hybrid automaton and
apply the semi-explicit algorithm 1 to this system.
The state of system when a sufficiently long time
has passed after booting the system is defined as
equilibrium state of this model, and define the
output of the temperature sensor equipped on
the motherboard as the CPU temperature. Then
from some experimental results, the dynamical
behaviors of this model around equilibrium state
are given as follows: (a) the time variation of the
amount of CPU tasks in the buffer proportionally
decreases as clock frequency increases, and (b) the
time variation of CPU temperature proportionally
increases as the clock frequency increases and the
angular velocity of cooling fan decreases.

Thus the state equations of this model around the
equilibrium state are expressed as follows:

T = 7K10
p: —K2p+Kgc—K4w (13)
w=—Ksw+ Kgv

where 7 € R, p € R, and w € R are the deviations
of the amount of CPU tasks in the buffer, the CPU
temperature and angular velocity of a cooling fan
from the equilibrium state, respectively, and ¢ € R
and v € R are deviations of clock frequency and
the voltage input of a cooling fan from equilibrium
input, respectively. The first and second equations
express the dynamics (a) and (b), while the third
equation is the dynamics of the DC motor of fan.

Let ¢ and v can be switched according to the
values of m and p at the switching times. The
policy is that

e the voltage v of cooling fan is the only control
input in the usual mode (¢1);

e the clock frequency c is the only control if
the amount of CPU tasks is large but CPU
temperature is not so high that is called busy
mode (g3);

e both c and v are used as control inputs only
in an emergency mode (gz).

Let z = [m, p,w]T and u = [c,v]T be the contin-
uous state and control input. The parameters in

Table 1. Continuous dynamics.

State Dynamics(z =) Input Invariant
00 0 00 c—o —10< <3
q1 0 —0.05 —05|z+| 00 [u ST 10< p <10
00 _3 0 0.5 v E€[-10,10] 152,20
L - <10
00 0 -10 i
c e [-5,5] p <10
—0.05 —0.5 |z 1 =
92 80005 _25 z + 8 85:|"ve[1010]7r+p210
L L : —10 < w < 10
00 0 -10 0< 7 <10
as | 0 —0.05 —0.5 |z +| 0.1 0 |u 23[’5’5] 0<p<7
00 -3 0 o0 = —10<w<10

—> >

Fig. 2. The discrete path .

Fig. 3. Trajectories of x1(t), z2(t) and x3(t).

each location are shown in Table 1. The discrete
path considered in this example is described in
figure 2. where the guard sets are:

-1 -10 —10

G12(0'12):{x |:1 0 0:|Jj§|: 3 :|}
0 1 0 10
-1 -10 —10

ot = 2| |1 8] o= [ ]
1 0 0 3
0 —-10 10

The initial and target states are (qi,[1,7, —10]T)
and (q1,[0,0,0]7) and the equilibrium input is
ue = [0,0]T. Applying the algorithm 1 on the
discretized automaton with T, = 0.5s, we have
the simulation results shown in figure 3. The
trajectory projected on m — p space is shown in
figure 4. The optimal input of the controller is
depicted in figures 5 and 6.The execution time on
a Pentium 1GHz with 256MB RAM is 3.435 s.

7. CONCLUSIONS

The main contribution of this paper is the use of
hybrid automata models in association with pre-
dictive control techniques in order to derive sub-
optimal solutions for the target control problem
instead of using MLD or PWA models. The differ-
ence is that the hybrid automaton model involves
guard sets (switching conditions) that introduce
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non-determinism. Algorithm 1 reduces the on-
line computation by deriving off line the shortest
discrete path. In addition, the on-line controller
avoids non-determinism by supplying a sequence
of optimal control inputs, instead of sets of control
inputs as in (Pang and Spathopoulos, 2005). MPC
and MIPC of hybrid systems has been extended
to systems in the face of persistent disturbances.
This is achieved by imposing tighter state and
control constraints to the nominal system. Then,
the feedback predictive controller, based on the
nominal state and control trajectories, provides
a suboptimal solution to the target control prob-
lem.
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