Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Robust semi-explicit model predictive control for hybrid automata

Pang, Y. and Xia, H. and Spathopoulos, M.P. (2006) Robust semi-explicit model predictive control for hybrid automata. In: Proceedings of International Conference on Computational Science and Its Applications. Lecture Notes in Computer Science . Springer. ISBN 3540340793

[img]
Preview
PDF (strathprints006223.pdf)
strathprints006223.pdf

Download (217kB) | Preview

Abstract

In this paper we propose an on-line design technique for the target control problem of hybrid automata. First, we compute on-line the shortest path, which has the minimum discrete cost, from an initial state to the given target set. Next, we derive a controller which successfully drives the system from the initial state to the target set while minimizing a cost function. The (robust) model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the (robust) mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining the two techniques and applied on a high-speed and energy-saving control problem of the CPU processing.