Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Unambiguous comparison of the states of multiple quantum systems

Chefles, A. and Andersson, E. and Jex, I. (2004) Unambiguous comparison of the states of multiple quantum systems. Journal of Physics A: Mathematical and Theoretical, 37 (29). pp. 7315-7340. ISSN 0305-4470

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider N quantum systems initially prepared in pure states and address the problem of unambiguously comparing them. One may ask whether or not all N systems are in the same state. Alternatively, one may ask whether or not the states of all N systems are different. We investigate the possibility of unambiguously obtaining this kind of information. It is found that some unambiguous comparison tasks are possible only when certain linear independence conditions are satisfied. We also obtain measurement strategies for certain comparison tasks which are optimal under a broad range of circumstances, in particular when the states are completely unknown. Such strategies, which we call universal comparison strategies, are found to have intriguing connections with the problem of quantifying the distinguishability of a set of quantum states and also with unresolved conjectures in linear algebra. We finally investigate a potential generalization of unambiguous state comparison, which we term unambiguous overlap filtering.