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Statistical fluctuations of the emitted light from random amplifying media are theoretically and
numerically studied. The characteristic scales of the diffusive motion of photons lead to Gaussian

or power-law (Lévy) distributed fluctuations depending on external control parameters.

In the

Lévy regime, the output pulse is highly irregular leading to huge deviations from a mean—field
description. Monte Carlo simulations of a simplified model which includes the population of the
medium demonstrate the two statistical regimes and provide a comparison with dynamical rate
equations. Different statistics of fluctuations help to explain phenomenological observations reported

in the experimental literature.

PACS numbers: 05.40.-a,42.65.5f,42.55.Px

I. INTRODUCTION

Optical transport in disordered dielectric materials can
be described as a multiple scattering process in which
light waves are randomly scattered by a large number of
separate elements. To first approximation this gives rise
to a diffusion process. The propagation of light waves
inside disordered dielectric systems shows several analo-
gies with electron transport in conducting solids [1]] and
the transport of cold atom gasses [2]. A particularly in-
teresting situation arises when optical gain is added to
a random material. In such materials light is multiply
scattered and also amplified. They can be realized, for
instance, in the form of a suspension of micro particles
with added laser dye or by grinding a laser crystal. Op-
tical transport in such systems is described by a multiple
scattering process with amplification.

If the total gain becomes larger then the losses, fluc-
tuations grow and these systems exhibit a lasing thresh-
old. The simplest form of lasing in random systems is
based on diffusive feedback [3] where a diffusion process
traps the light long enough inside the sample to reach
an overall gain larger then the losses. Interference effects
do not play a role in this form of random lasing. Diffu-
sive random lasing has been observed in various random
systems with gain, including powders, laser dye suspen-
sions, and organic systems [4, 15, 6, 4, |§]. The behavior
of such system shows several analogies with a regular
laser, including gain narrowing, laser spiking and relax-
ation oscillations |4, [9]. Reports in literature of complex
emission spectra from random lasers containing a collec-
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tion of spectrally narrow structures [10, [11, [12] have trig-
gered a debate about the possibility of lasing of Ander-
son localized modes in random systems [L0]. Although
Anderson localized modes can, in principle, form very
interesting lasers resonators in a gain medium [13, [14],
there has been no experimental evidence to date of in-
dependent random lasing and localization in the same
(3D) random sample. In general, the observed spectra
can be understood via a multiple scattering description
based on the amplification of statistically rare long light
paths that does not require localization or even inter-
ference [18]. These emission spectra exhibit a strongly
chaotic behaviour, related to the statistical properties of
the intensity above and around the laser threshold.

Theoretical descriptions of light transport in amplify-
ing disordered media and random lasing have been based
so far on a diffusive mechanism [9, 16, [11], using, for
instance, a master-equation approach [18]. To accommo-
date the existence of localization related effects in the dif-
fusion regime, theoretical ‘anomalously localized states’
have been proposed [19, 20, 21, 22, 23, 24]. Other at-
tempts to describe random lasing include Monte Carlo
simulations [25], finite difference time domain calcula-
tions [2€], and an approach using random matrix the-
ory [27]. A common feature of these studies is that
the statistical properties of a disordered optical system
change with the addition of optical gain. It was, for in-
stance, proposed that such systems can exhibit Lévy type
statistics in the distribution of intensities |28].

In this paper we report on a detailed study of the sta-
tistical fluctuations of the emitted light from random am-
plifying media, using both general theoretical arguments
and results from numerical studies. We find that the
characteristic scales of the diffusive motion of photons
lead to Gaussian or power-law (Lévy) distributed fluc-
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tuations depending on external parameters. The Lévy
regime is limited to a specific range of the gain length,
and Gaussian statistics are recovered in the limit of both
low and high gain. Monte Carlo simulations of a simpli-
fied model which includes the medium’s population and
parallel processing of a large number of random walk-
ers, demonstrate the two statistical regimes and provide
a comparison with dynamical rate equations.

In Section [l we present some general arguments to
explain the origin of the Lévy statistics in random am-
plifying media. In addition, we discuss the possibility of
observing different statistical regimes. To check the va-
lidity of the general proposed scenario, we define a simple
stochastic model that is suitable for numerical simula-
tions (Section [I)). The rate equation corresponding to
its mean—field limit are introduced in Section [¥l The
results of Monte Carlo simulations are presented in Sec-
tion [Vl and discussed with experimental results in the
concluding Section.

II. STATISTICS OF THE EMITTED LIGHT

Let us consider a sample of optically active material
where photons can propagate and diffuse. Our descrip-
tion is valid in the diffusive regime, hence we assume here
that A is smaller of the photon mean free path ¢, A < £.
The origin of the Lévy statistics can be understood by
means of the following reasoning. Spontaneously emitted
photons are amplified within the active medium due to
stimulated emission. Their emission energy is exponen-
tially large in the path length [ i.e.

I(l) = Ioexp(l/lc) (1)

where we have introduced the gain length £g. On the
other hand, the path length in a diffusing medium is a
random variable with exponential probability distribu-
tion

exp(=1/{1))
{0)

where (I) is the length of the photon path within the
sample. The path length depends on both the geometry
of the sample and the photon diffusion constant D. A
simple estimate of (I) can be provided by noting that
for a diffusive process with diffusion coefficient D, (I} is
proportional to the mean first—passage time yielding [29]

pl) = (2)

v

W = o 3)

where v is the speed of light in the medium and A is the
smallest eigenvalue of the Laplacian in the active domain
(with absorbing boundary conditions). For instance, A =
q® with ¢ = /L for an infinite slab or a sphere with L
being the thickness or the radius, respectively [3].

The combination of Egs. () and @) immediately pro-
vides that the probability distribution of the emitted in-
tensity follows a power—law

p(I) = %I“W =@

Obviously the heavy—tail (@) holds asymptotically and
the distribution should be cut—off at small I . The prop-
erties of the Lévy distribution (more properly termed
Lévy-stable) are well known [30]. The most striking one
is that for 0 < o < 2 the average (I) esists but the vari-
ance (and all higher-order moments) diverges. This has
important consequences on the statistics of experimental
measurements, yielding highly irreproducible data with
lack of self-averaging of sample-to—sample fluctuations.
On the contrary, for v > 2 the standard central-limit
theorem holds, and fluctuations are Gaussian.

The gain length £ is basically controlled by the pump-
ing energy i.e. by the population of the medium excita-
tions. Increasing the latter, /¢ and the exponent « (see
equation (@) decrease thus enhancing the fluctuations.
At first glance, one can infer that the larger the pump-
ing the strongest the effect. On the other hand, /s is a
time—-dependent quantity that should be determined self-
consistently from the dynamics. Indeed, above threshold
the release of huge number of photons may lead to such
a sizeable depletion of the population itself to force f¢
to increase. It can then be argued that when the deple-
tion is large enough the Lévy fluctuation may hardly be
detectable.

To put the above statements on a more quantitative
ground we need to estimate the lifetime of the population
as created by the pumping process. Following Ref. [3],
we write the threshold condition as

r =v/lg—DA > 0 (5)

which is interpreted as “gain larger than losses”, the lat-
ter being caused by the diffusive escape of light from the
sample. Note that the condition r = 0 along with Eqgs. @)
and (@) implies & = 1 at the laser threshold.

For short pump pulses the time necessary to the inten-
sity to become large is of the order of the inverse of the
growth rate r. When this time is smaller than the average
path duration within the sample (I)/v, a sizeable ampli-
fication occurs on average for each sontaneously emitted
photon leading to a strong depletion of the population.
In this case we expect a Gaussian regime where a mean
field description is valid. The conditions for the Lévy
regime are 1/r > (I} /v and a < 2 and can be written as:

v
—— < lg < 2— . 6
2DA ~ ¢ T “DA ©

Note that the lower bound of the above inequalities cor-

respond to o = 1/2.

Without losing generality and for later convenience, let
us focus on the case of a two—dimensional infinite slab of



thickness L. In Fig. [l we graphically summarize equa-
tion (@) by drawing a diagram in the (L, £g) plane. This
representation is convenient since it allows to locate three
different regions corresponding to different statistics. For
convenience the line corresponding to the threshold a = 1
is also drawn. The three regions of statistical interest dis-
played in Fig. [ are:

Subthreshold Lévy: weak emission with Lévy statistics
with 1 < a < 2 (shaded region in Fig. [l above the laser
threshold line);

Suprathreshold Lévy: strong emission with Lévy statis-
tics with 1/2 < o < 1 (shaded region in Fig. [l below the
laser threshold line);

Gaussian: o < 1/2 strong emission with Gaussian
statistics, a > 2 weak emission with Gaussian fluctua-
tions.

Note that the first region corresponding to a nonlasing
state, should display anomalous fluctuations as “precur-
sors” of the transition. It should be also emphasized
that the boundary between Lévy and Gaussian statistics
is not expected to correspond to a sharp transition (as
displayed in Fig. ) but rather to a crossover region.
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FIG. 1: (Color online) Different statistical regimes of fluctua-
tions of a random laser with a two-dimensional slab geometry
of height L. For comparison with the simulations reported be-
low, all quantities are expressed in dimensionless units £ = 1,
v = 1. The symbols correspond to the parameter of Fig.

IIT. NUMERICAL MODEL

In order to provide evidence of the theoretical consider-
ations presented in Section[[l we introduce a general, yet
easy to simulate, model of random lasing. We consider a
sample partitioned in cells of linear size £. Specifically, we
deal with a portion of a two-dimensional square lattice.
Thus the center of each cell is identified by the vector in-
dex r = (z,y), with z, y integers. In the following we will
deal with a sample with a slab geometry ie. 1 <x < L,
1 < y < RL. The total number of lattice sites is thus RL?
where R defines the slab aspect ratio. Periodic boundary
conditions in the y direction are assumed.

Within each cell we have the population N(r,t) of ex-
citations. We consider an hypotetical three-level system
with fast decay from the lowest laser level. If the pop-
ulation in the latter can be neglected we can identify N
as the number of atoms in the excited state of the lasing
transition.

Isotropic diffusion of light is modeled as a standard
random walk along the lattice sites. The natural time
unit of the dynamics is thus given by At = £/v. We
choose to describe the photon dynamics in terms of a set
of M walkers each carrying a given number of photons
ni,...ny. This may be visualized as an ensemble of
“beams” propagating independently troughout the sam-
ple. Each of their intensities changes in time due to pro-
cesses of stimulated and spontaneous emission. A basic
description of those phenomena can be given in terms of
a suitable master equation [1&, 31] that would require to
take into account the discrete nature of the variables. To
further simplify the model we consider that the popula-
tion and number of photons within each cell are so large
for the evolution to be well approximated by the deter-
ministic equation for their averages. In other words, the
rate of radiative processes is much larger than that of
the diffusive ones and a huge number of emissions occurs
within the time scale At [32]. With these simplifications
N and n can be treated as continuous variables. Alto-
gether the model is formulated by the following discrete—
time dynamics:

Step 0: pumping - The active medium is excited homo-
geneosly at the initial time i.e. N(r,0) = Ny. The value
Ny represents the the pumping level due to some external
field. The initial number of walkers is set to M = 0.

Step 1: spontaneous emission - At each time step and
for every lattice site a spontaneous emission event ran-
domly occurs with probability vNAt, where v denotes
the spontaneous emission rate of the single atom. The
local population is decreased by one:

: (7)

and a new walker is started from the corresponding site
with initial photon number n = 1. The number of walkers
M is increased by one accordingly.

Step 2: diffusion - Parallel and asychronous update of
the photons’ positions is performed. Each walker moves
with equal probability to one of its 4 nearest neighbours.
If the boundaries x = 1, L of the system are reached, the
walker is emitted and its photon number n,,: recorded
in the output. The walker is then removed from the
simulation and M is diminished by one.

Step 8: stimulated emission - At each step, the pho-
ton numbers of each walker and population are updated
deterministically according to the following rules:

N — N-1

n; — (1 +7AtN) n; (8)
N — (1 —~Atn;)) N

where N is the population at the lattice site on which
the 1—th walker resides.



Stochasticity is thus introduced in the model by both
the randomness of spontaneous emission events (Step 1)
and the diffusive process (Step 2). Note that the model
in the above formulation does not include non-radiative
decay mechanisms of the population. Furthermore, no
dependence on the wavelength is, at present, accounted
for; in general v = y(\).

The initialization described in Step 0 is a crude mod-
elization of the pulsed pumping employed experimentally.
It amounts to consider an infinitely short excitation dur-
ing which the samples absorbs Ny photons from the pump
beam. As a further simplification we also assumed that
the excitation is homogeneous on the whole sample. More
realistic pumping mechanisms can be easily included in
this type of modeling [33]. More importantly, as we are
going to study the time dependence of the emission, this
type of scheme applies to the case in which the time sep-
aration between subsequent pump pulses is much larger
than the duration of the emitted pulse (i.e. no repumping
effects are present).

Steps 1-3 are repeated up to a preassigned maximum
number of iterations. The sum of all the photon numbers
of walkers flowing out of the medium at each time step is
recorded. The resulting time series is binned on a time
window of duration Ty to reconstruct the output pulse as
it would be measured by an external photocounter. This
insures that each point is a sum over a large number of
events.

It should be emphasized that, although each walker
evolves independenly from all the others, they all interact
with the same population distribution, which, in turn,
determines the photon number distributions. In spite of
its simplicity, the model describes these two quantities in
a self-consistent way.

For convenience, we choose to work henceforth in di-
mensionless units such that v = 1, £ = 1 (and thus
At = 1). The ounly independent parameters are then
7, the initial population Ny (i.e. the pumping level) and
the slab sizes L, RL.

IV. MEAN-FIELD EQUATIONS

Before discussing the simulation of the stochastic
model it is convenient to present some results on its
mean-field limit. When both the population and photon
number are large we expect the dynamics to be described
by the rate equations for the macroscopic averages. This
means that, up to relatively small fluctuations, the indi-
vidual realization of the stochastic process should follow
the solution of |3, [1§]

N =—-yN( +1) (9)
I =DAI+yN(I+1) (10)
where I(r,t) is the number of photons in each cell, A

denotes the two—dimensional discrete Laplacian and D =
1/4 in our case.

For simplicity, let us consider the case of a laterally
infinite slab (R — o00) in which both N and I depend on
the y coordinate, only. Absorbing boundary conditions
are imposed, 1(0,t) = I(L 4+ 1,t) = 0. The integration is
started from the same initial conditions of the stochastic
simulations, namely N(x,0) = Ny, I(x,0) = 0.

As a first remark, we note that the threshold condition
@) applies to ) upon identifying

1 T

Wo=go o 4=y (11)
We can thus define a critical value of the initial popu-
lation N, = Dg?/y. For Ny < N, the total emission
is very low being due to spontaneous processes that are
only weakly amplified. On the contrary, for Nyo > N,
light amplification occurs: the number of photons within
the sample increases exponentially in time at a rate given
by @), r = yNo — Dq®> = v(No — N.). After the pulse
has reached a maximum and the population is depleted,
the emission decreases strongly. An estimate of the de-
cay time of the pulse is given by solving the linearized
equations around the stationary state N = 0, I = 0.
A straightfoward calculation yields that the long—time
evolution is approximated by N(xz,t) = N,4(t)sin(qx),
I(z,t) = I,(t) sin(gz) where

N (t) = Aexp(—7t) (12)

_ g . P2
Io(t) = Aiquz — exp(—7t) + Bexp(—Dqt),

with A, B being suitable time-independent amplitudes.

The above results have been checked by comparing
them with the numerical solution of () obtained by
simple integration methods of ordinary differential equa-
tions. In particular, we checked that both the rise and
fall rates of the emission pulses (see the figures in the
next section) are consistent with the expected values of
r and and Eqs. [3)), respectively.

V. MONTE CARLO SIMULATIONS

In this Section we report the results of the simulation of
the stochastic model. Preliminary runs were performed
to check that lasing thresholds exist upon increasing of
either the pumping parameter Ny and the slab width L.
The values are in agreement with the theoretical analysis
presented above. In addition, checks of relations (@) and
@) have been performed.

As explained in Section [Tl we monitored the outcom-
ing flux (per unit length) ¢ as function of time. The re-
sults are compared with the corresponding quantity eval-
uated from Eqs. [I0). In this case, ¢ is defined from the
discrete continuity equation to be

6 = g 00+ 1L (13)

The factor 2 comes from taking into account the contri-
bution from the two boundaries x = 0, L of the lattice.
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FIG. 2: (Color online) The photon flux (per unit length) as a
function of time for a single shot and for Ny = 2 x 10°, (a);
No = 5 x 10° (b) and Ny = 50 x 10° (c). Smooth red lines
are the mean-field results evaluated inserting the solutions of
Egs. (M) into ([3). For both curves, data have been binned
over consecutive time windows of duration Tw = 10. Note
the difference in the vertical-axis scales

The results of Monte Carlo simulation for a lattice with
L = 30, R = 20 (18000 sites) and v = 10712 (yielding
N, = 2.5673 x 10%) are reported in Fig.l The three cho-
sen values of Ny are representative of the three relevant
statistical regions depicted in Fig. [} they correspond to
¢ = 500 (Subthreshold Lévy), ¢ = 200 (Suprathresh-
old Lévy) and g = 20 (Gaussian) respectively (see the

triangles in Fig. [[l). In the first two cases the total emis-
sion is highly irregular with huge departs from the ex-
pected mean—field behavior. Above the lasing threshold
(Fig. [Mb) single events (“lucky photons”) may carry val-
ues of n; up to 10'°. The resulting time-series are quite
sensitive to inizialization of the random number gener-
ator used in the simulation. On the contrary, in the
Gaussian case (Fig. Bk) the pulse is pretty smooth and
reproducible, except perhaps for its tails.

The evolution of the population N displays similar fea-
tures. We have chosen to monitor the volume-averaged
population

% SN, t) (14)

normalized to its initial value for a better comparison.
Fig. Bl shows the corresponding time—series for the same
runs of Fig. Again, large deviations from mean—field
appear for the first two values of Ny. The inset shows
that in correspondence with large-amplitude events the
population abruptly decreases yielding a distinctive step-
wise decay.

The non-smooth time decay is accompanied by irregu-
lar evolution in space. Indeed, a snapshot of N(r,t) re-
veals a highly inhomogeneous profile (see Fig. Hl). Light
regions are traces of high—energy events that locally de-
plete the population before exiting the sample.

For the Gaussian case (lowest curves in Fig. Pl) similar
considerations as those made for the corresponding pulse
apply. Note that now the population level decays ex-
tremely fast. It reaches 10% of its initial value at t ~ 600
which is a factor two of the average residence time within
the sample. This means that photons emitted after a few
hundreds time steps have hardly any chance to be signif-
icantly amplified (i.e. ¢ has become too large).
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FIG. 3: (Color online) The normalized volume-averaged

atomic population as a function of time for a single shot and
for the same values of Ny as in Fig.[2l Solid lines are the mean-
field results evaluated inserting the solutions of Eqs. () into
([@). The inset shows a magnification of the middle curves
(case No = 5 x 10? of Fig. Bb).



FIG. 4: A gray—scale plot of the atomic population distribu-
tion along a portion of the lattice for t = 10°, Ny = 5 x 10°.
White regions correspond to small values of N.

To check directly the validity of the power—law dis-
tribution @) we computed the histograms of the photon
number n,,,,; for each collected event. The result are given
in Fig. Bl for three values of Ny for which the Lévy distri-
bution (@) is expected to occur. It should be recognized
that this procedure is not entirely legitimate since we
are dealing with a non—stationary process. This notwith-
standing a clear power-law tail extending over several
decades is observed. Note that the middle curve cor-
respond to the threshold value Ny = N, for which we
expect @ = 1. Remarkably, the values of the exponents
measured by fitting the data are in excellent agreement
with the definition of « (see inset of Fig.[l). As predicted,
no meaningful value smaller than «« = 1/2 is obtained
from the data.
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FIG. 5: (Color online) Histogram p(nout) of the emitted pho-
ton numbers n,y: for the two values of Ny of Figs. Bh and b
(lower and upper curves) and No = N, (middle). This middle
curve has been vertically shifted for clarity. The inset reports
the values of a obtained by power-law fit of the histograms
as a function of the gain length {¢ as defined by Eq. ().
The thin solid line is the theoretical curve as computed by
Egs. (@) and @). The dashed vertical line marks the lasing
threshold.

Finally, to further elucidate the differences betweeen
the two types of statistical regimes, we performed a se-
ries of simulations increasing the number of lattice sites.
For comparison, we kept L = 30 fixed and increase the
aspect ratio R up to a factor 4. In this way, we increase
the number of walkers accordingly. For the Gaussian
case, we do observe the expected reduction of fluctua-

tions around the mean—field solution. On the contrary,
the wild fluctuations of the Levy case are hardly affected.
This is a further confirmation of the scenario discussed
in Section [l

VI. DISCUSSION

Based on heuristic arguments, we have shown in Sec-
tion [l that, depending on the value of the dimensionless
parameter DAlq /v, the fluctuations in the emission of a
random laser subject to short pump pulses can be dras-
tically different. In a parameter region extending both
above and below threshold the photon number fluctua-
tions follow a Lévy distribution thus displaying wild fluc-
tuations and huge differences in the emission from pulse
to pulse. In the suprathreshold case, such features have
been indeed observed in experiments [2§].

The exponent « of the Lévy distribution can be con-
tinously tuned upon changing the pumping level but it
must be somehow bounded from below («a 2 1/2) as a
further crossover to a Gaussian statistics is attained. In-
deed, far above threshold, when the gain length is very
small, a large and fast depletion of population occurs
(saturation). This hinders the possibility of huge am-
plification of individual events. In this case all photons
behave in a statistically similar way. As a consequence,
the statistics is Gaussian and a mean—field description
applies.

The above considerations have been substantiated by
comparison with a simple stochastic model. It includes
population dynamics in a self-consistent manner. In the
Lévy regions, the simulation data strongly depart from
the predictions of mean—field approximation due to the
overwhelming role of individual rare events. As a conse-
quence, the evolution of the population displays abrupt
changes in time and is highly inhomogeneous in space.

To conclude this general discussion we remark that the
width of the Lévy region as defined by inequalities ()
and depicted in Fig. [Mis of order L2. Since in our simple
model, £ is inversely proportional to the pump parame-
ter (see equation ([I])), the interval of Ny values for which
the Lévy fluctuations occur shrinks as 1/L?. Therefore,
the larger the lattice the closer to threshold one must be
to observe them.

The existence of a such strong fluctuations is at vari-
ance with standard lasers that typically display them
only at threshold. The emission statistics of random am-
plifying media has diverging moments in a finite region
of parameters extending across the threshold curve.

The existence of different statistical regimes, their
crossovers and their dependence on various external pa-
rameters enriches the possible experimental scenarios.
Our theoretical work has shown that, depending on size,
geometry, pumping protocols etc. the emission of random
lasers may change considerably. This general conclusion
should be a useful guidance in understanding past and
future experiments on random amplifying media.
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