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1 Proof of Proposition 1

The possible values of Kendall’s tau distance between any two permutations
of length R are 0,1,...,T, where T = R(R — 1)/2. Suppose we order the
sequences from highest expected utility to lowest expected utility and, without
loss of generality, suppose the ordering is denoted (1,2,..., R). We name this
the base ordering of the sequences.

We can find the total number of permutations, Cg s, which are at most
distance ¢ from the base ordering. The Kendall’s tau distance to the base
ordering is the number of pairs of j, j/ such that j < j/ but j/ appears before
j in the permutation. Any pair j, j/ which has this property is known as an
inversion. Any permutation of the base ordering is a permutation of 1,... R—1
with R inserted. If we insert R at position [, this creates R — [ new inversions.
Thus the previous permutation must have had at most 6 — (R — [) inversions.
Thus,
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From this, we can calculate the number of permutations of the base ordering
with a Kendall’s tau distance of § as Ngs = Crs — Cras—1. Now, we are
interested in the proportion of these permutations which maintain the sequence
with highest utility as the first element, second element, etc. Thus, if we know
the Kendall’s tau distance of function f(-), this will give us the probability that
the sequence with highest value of f(-) also has the highest expected utility, etc.

Consider the proportion which maintain sequence 1 as the first element.
This implies that in positions 2, ..., R we require J inversions and the number
of ways this can happen is Nr_; 5. Similarly, the number of ways sequence 1 can



be the second element is Ng_j s5—1 and the number of ways it can be the m’th
element is Ng_1 5—m+1. The proportions in each case are given by dividing by
the number of permutations with Kendall’s tau distance 6, Nr 5. This gives the
result.

2 Proof of Proposition 2

The probability that the optimal sequence is in the m candidates, from Corollary

1, is
Z Cr—2,6— Cr25-m+1
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Clearly, Cr_20 =1land d —m+1 > 0v¥m =1,..., M. Specifically, 6 — M +
1 >0 and so M < § + 1. Since the optimal sequence must be one of the R

permutations,
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3 Prior expectation of the reliability under planned
development tasks

Following some development tasks, the system reliability, assuming that every
fault found is corrected without introducing further faults, is given by
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where I[z; > d;] is an indicator function which takes the value 1 if z; > d; and
zero otherwise. Taking the expectation of this with respect to Z | D, where
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Z=(Zy,....Z;) and D = (D4,...,Dy),
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as Z; | D; is independent of Z; | D;. Taking the expectation with respect to D,
gives
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We can express the expectation concerning fault i as

Ep. {EZHDi [R(t,zi7di)” = Pr(D; = 1) [Pr(zi =1|D; = DR(t,1,1)
+Pr(Z = 0| D; = 1)R(t,0, 1)]
+ Pr(D; = 0) [Pr(Zi = 1|D; = 0)R(t,1,0)
+Pr(Z; = 0| D; = 0)R(,0, o)} . (1)
We can evaluate each of the quantities in this expression. They are
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for the conditional probabilities, R(t,1,1) = R(t,0,1) = R(t,0,0) = 1 and

R(t,1,0) = R;(t). Thus the expectation in (1) is
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Substituting this into the expectation of interest, gives the result:
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4 Example of theoretical results

Suppose that there are 3 tasks which we wish to sequence. This means that
there are 3! = 6 possible sequences of the 3 tasks. Define the value of the
surrogate function for sequence x; to be f; = f(x;) and the expected utility
to be u; = U(x;), for i = 1,...,6. Suppose that the ordering of the sequences
using the surrogate function is f1 > fo > f3 > f4 > f5 > fs, and that the
Kendall’s tau distance between the expected utility and the surrogate function
is 2. This means that 7 = 11/15.

We can calculate the values of Cr 5 and Ngpsfor R=1,...,6and 6 = 1,2, 3,
which will allow us to find the probability that the sequence with the maximum
expected utility is in the highest M places ordered by surrogate function. The
values are in Table 1.

Cr,s Nrg.s
RS|1 2 3|Ri|1 2 3
1 1 1 1 1 0 0 0
2 2 2 2 2 1 0 0
3 3 5 6 3 2 2 1
4 4 9 15 4 3 5 6
5 5 14 29 5 4 9 15
6 6 20 49 6 5 14 29

Table 1: Tables showing the values of Crs and Nrs for R = 1,...,6 and
6=1,2,3.

We can use the result in Corollary 1 in the main paper as 6 = 2, R = 6 and
so 6 < R—1. We see that C52 = 14, Cy2 = 9, Cy1 = 4 and we know that
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Cy,0 = 1. Therefore, the probabilities that the sequence with highest expected
utility is in the sequences with the highest M values of f(), for M =1,...,6 are
(9/14,13/14,14/14,14/14,14/14,14/14), respectively. We see that, choosing
M = §+1 =3, we obtain the optimal sequence with probability 1 as shown by
Proposition 2 in the main paper.

In this simple case we can find the probabilities directly. There are 6! =
720 possible orderings of the expected utilities uq,...,ug. Of these, 14 have a
Kendall correlation 7 = 11/15 with the surrogate function ordered as above.
Suppose that the true ordering of the expected utilities is some permutation of
U1, ..U, SAY Uy < u) < Uy < ug) < Uiy < ueg). Then the orderings
below of the sequences have the required Kendall correlation (given in order,
from first to last).

We see that, of the 14 sequences, in 9 cases the sequence with the highest
value for the expected utility is in the first position in the ordering (red), in 4
cases it is in the second position (blue) and in one case it is in the third position.
This results in the probabilities given above.

(1) U(2)5 U(3)5 U(5), U(6)s U(a) | U(1)s U(2), U(3)s U(6)s U(4)» U(5)
U(1), U(2), U(4), U(3), U(6), U(5) | U(1)s U(2)s U(a)s U(5)s U(3) U(6)
11,(1),’11/<2)7”11,(5),11,(;3),“(4),71,(6) ’11/<1),”(1,(3) u(z) 11(4),71(6) (1()
U(1), U(3), U(2), U(5)s U(4), U(6) | U(1), U(3), U(4), U(2), U(5), U(6)
U(1)s U(a)s U(2), U(3), U(5), U(6) | U(2) U(1), U(3)> U(4)s U(6)> U(5)
U(2)s U(1)> U(3), U(5), U(4), U(6) | U(2) U(1)> U(4): U(3)s U(5)> U(6)
U(2); U(3)> U(1), U(4), U(5), U(6) | U(3), U(1), U(2): U(4)s U(5)> U(6)

5 Splitting the training sample: an illustrative
example

In the illustrative example of Section 4 in the main paper, we have a training
sample of size N = 60. Here we split this training sample into s = 3 sub-samples
of size 20 and fit a regression-adjusted surrogate (using the Benter-Pearson
model-correlation combination) to each. Figure 1 plots the logit-transformed
expected utilities against the fitted values from the regression-adjusted emu-
lators in each of the sub-samples. For comparison, Figure 1 also contains the
fitted values from the regression-adjusted surrogate based on all N = 60 training
samples.

It can be seen that there is a good correspondence between the emulator
values based on the sub-samples and the emulator values based on the full
training sample, as we would expect.

We can also look at the top M sequences under each sub-sample-based em-
ulator and compare with the M sequences under the emulator based on the full
training sample. These are shown in Tables 2 to 5.

Again, as expected there is a good correspondence between the M sequences
under the different sub-samples and the full training sample, with tasks 8, 6 4
and 3 being proposed early in the sequence and task 5 typically late in the



Table 2: Top M = 40 sequences under the emulator based on the first sub-
sample of 20 training sequences (corresponding to the black dots in Figure 1).



Table 3: Top M = 40 sequences under the emulator based on the second sub-
sample of 20 training sequences (corresponding to the red dots in Figure 1.)



Table 4: Top M = 40 sequences under the emulator based on the third sub-
sample of 20 training sequences (corresponding to the green dots in Figure 1.)



Table 5: Top M = 40 sequences under the emulator based on the full set of

60 training sequences (corresponding to the grey circles in Figure 1.)

N =



logit(expected utility)
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Figure 1: Logit transformed expected utilities versus regression-adjusted surro-
gate values based on the full training sample (grey circles) and on three sub-
samples of size 20 (black, red and green dots). The red line as zero intercept
and unit gradient.

sequence. It can be seen that there is more variability in the M sequences from
the first sub-sample (Table 2) and these seem less similar to the M sequences
from the full training sample than those from the other two subsamples.

Whilst sub-sampling like this may seem like it has the potential to provide
information about the stability of the emulator and of the putative optimal
sequences it is not clear how to leverage this information in a real example. We
would argue that we have not gained very much insight in the above illustrative
example by adopting this approach. There are still no guarantees regarding the
optimality of the putative optimal sequence.

Furthermore, it is difficult to conceive of a situation in which the sub-samples
would not lead to an emulator that is worse than that based on the full training
sample because they are based on a smaller sample, and smaller samples will
naturally lead to poorer emulators. Therefore, with a given budget B, we do
not see any strong arguments in favour of splitting the training sample.

6 Guidance on choice of N and M: simulation
study

An extensive simulation study was carried out to explore the effect of the choice
of N (for a given budget B) on finding the optimal sequence over a range of

values for the model parameters J, I, Ry, €, \, p,q and so on.
A total of 10000 “problem scenarios” were generated randomly from the
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following distributions:

J ~ U[6,10]
I~ U[5,15]
Ry ~ U(0.7,0.95)
€; = € ~ Gamma(10, 500), i=1,...,1
A ~U(0,0.5), i=1,...,1
i ~U0,05)IU(0,1)>05), i=1,....I, j=1,...,J,

with (g1, ¢2,¢g3) sampled uniformly from the discrete distribution with sample
space {(1/4,1/4,1/2), (1/4,1/3,5/12), (1/4,1/2,1/4), (1/4,2/3,1/12),
(1/4,3/4,0), (1/3,1/4,5/12). (1/3,1/3,1/3), (1/3,1/2,1/6),
(1/3,2/3,0),(1/2,1/4,1/4),(1/2,1/3,1/6),(1/2,1/2,0),
(2/3,1/4,1/12),(2/3,1/3,0),(3/4,1/4,0)}. In the above, and what follows,
U(a,b) denotes the continuous uniform distribution with sample space given
by the open interval (a,b), and Ulec, d] denotes the discrete uniform distribution
with sample space {¢,c+1,...,d}.

These distributions reflect the range of values that one might expect for
problems of this type. We restricted attention to a maximum of 10 tasks to
allow complete enumeration of all possible sequences in a reasonable time.

For each scenario k = 1,...,10000 we sampled a value of N, Ny, ~ U[25, 200]
and a value of M, M) ~ UJ[10,200] and performed the emulation as described
in the main paper, using the Benter-Pearson surrogate-correlation combination.
For each scenario k we recorded whether the optimal sequence was found in the
By = Nj + My, evaluations; giving Y, = 1 if the optimal sequence was found,
and Y, = 0 otherwise.

We then fitted a series of logistic regression models to the binary response
variable Y;, (for k =1,...,10000) which is the indicator of whether the optimal
sequence was found or not. The explanatory variables were the values of Ny,
By, and functions thereof. The models were fitted via maximum likelihood by
using the glm() function in R. Using the Akaike Information Criterion (AIC)
to compare the fit of different models we found that the model with

U(B,N) = logit(E[Y]) = Bo + 1N + B2 N? + B3 N?/ B>

gave the optimal fit (an AIC of 10035). So, given values for B and N we can
use the above expression to predict the probability that we will find the opti-
mal sequence (in generic problems of this type). Treating the logit-transformed
success probability ¢(B,N) as a function of N for fixed B, we can maximise
£(B, N) with respect to N to find an expression for the optimal N. Differ-
entiating ¢(B, N) with respect to N and setting the derivative equal to zero
gives A
N=— P
2(B2 + B3/ B?)
which can be shown to be a maximum in the usual way. Therefore, for a given
budget B, our simulations would suggest that the optimal choice of N is given

11



100 150
| |

50

I T T T T T T I
50 100 150 200 250 300 350 400

B

Figure 2: Optimal choice of N for a given budget B based on logistic regression
analysis of simulation results

by the above expression. Rounding the estimated logistic regression coefficients
to 4 decimal places for clarity we have

¢(B, N) = logit(E[Y]) = 0.3884 4 0.0199N — 0.0001N? — 1.3429N?/B?  (2)

and therefore,
0.0199

N= .
2(0.0001 + 1.3429/B?)

So, for example, when B = 100 we get N ~ 53 (to the nearest integer) using
the unrounded values for the logistic regression coefficients. The estimated
relationship between the “optimal” N and B is displayed in Figure 2.

Plugging the optimal N, as determined through Equation (3), into the lo-
gistic regression equation (2) for a range of values of B gives estimates for the
probabilities of finding the optimal sequence in the B evaluations. These prob-
abilities are displayed in the solid black line in Figure 3. Also displayed in
Figure 3 by the red dashed line are the estimated probabilities of finding the
optimal sequence when we simply choose N = B/2 (rounded to the nearest
integer), in other words we choose N = M; training samples and evaluation
samples of equal sizes. This clearly indicates that choosing N = M is only
marginally sub-optimal. Therefore due to its simplicity our recommendation to
practitioners, based on our simulations, would be that choosing an even split of
the budget B between N and M is a reasonable default choice.

3)
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Figure 3: Estimated probability of finding the optimal sequence in the B eval-
uations, using the “optimal” choice of N (black solid line), and using N = B/2
(red dashed line). The circles represent the observed proportion of successful
optimal sequence discoveries in 1000 independent simulations, for a range of
values of B. The vertical lines represent the usual large sample 95% confidence
intervals for a binomial proportion.
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To validate whether the logistic regression model (2) provides a good fit to
the simulated data, and hence whether our simple guidance on the choice of N
will be of practical relevance, we performed a validation simulation study. For
each value of B in {50,100, 150, 200, 250,300, 350} we generated 1000 “prob-
lem scenarios” randomly using the procedure detailed above. For each scenario
we performed the usual emulator fitting/evaluation process on a simple ran-
dom sample of sequences of size N = B/2. We recorded the proportion of the
scenarios in which the optimal sequence was found. These empirical propor-
tions are unbiased estimates of the true probabilities that the optimal sequence
would be found in the B evaluations and are represented by the circles in Fig-
ure 3; the vertical lines give approximate 95% confidence intervals for the true
probabilities. Our estimates of the probabilities from the independent valida-
tion simulations match up well with those predicted from our logistic regression
model, apart from when B = 50 where we see that the logistic regression model
overestimates the probability slightly. Overall, these simulations would suggest
that the logistic regression model is sufficiently accurate at predicting the proba-
bility of successfully finding the optimal sequence, over a wide range of plausible
scenarios. They also suggest that choosing N = B/2 seems a sensible, simple
default option in the absence of other specific information.

7 Cross entropy optimization-based training sam-
ple simulations

As an alternative to choosing the training sample via a random sample, we
have investigated the following simple alternative. For a training sample of size
N we take a random sample of size |N/2| from the set of all J! sequences,
then we fit the emulator based on maximising the correlation function between
emulator output and actual expected utility for these training sequences. We
then sample the remaining N — | N/2| training samples from the probabilistic
model associated with the emulator (Benter, PL or RPL) at the optimized
parameter values. The full set of | N/2] original and N — | N/2] new sequences
make up our full training sample. We then proceed to fit the emulator as
described in the main paper. As such this training sample is based on two-
stages of a cross-entropy optimization (CEQO) algorithm [Rubinstein and Kroese,
2004]. We present results in the following table for the same problem set-up as
in Section 5.1 of the main paper.
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M
N Correlation  Model 10 20 50 100 200

100 Pearson PL 0.21 0.35 0.52 0.75 0.84
RPL 0.42 059 0.74 092 0.96

B 0.58 0.75 0.86 0.94 097

Spearman PL 0.16 0.20 0.29 0.40 0.60

RPL 0.20 0.29 0.50 0.65 0.73

B 0.27 0.41 0.50 0.64 0.79

Kendall PL 0.11 0.18 0.28 0.39 0.56

RPL 0.23 0.34 0.46 0.61 0.74

B 0.17 0.26 0.43 0.57 0.75

200 Pearson PL 0.34 0.56 0.76 0.90 0.98
RPL 0.63 0.75 0.91 0.99 1.00

B 0.66 0.80 0.93 0.98 1.00

Spearman PL 0.14 0.23 0.41 0.69 0.85

RPL 0.40 0.58 0.80 0.90 0.98

B 0.54 0.67 0.83 0.93 0.95

Kendall PL 0.22 0.35 0.64 0.82 0.89

RPL 0.33 054 0.73 085 094

B 0.50 0.69 0.84 0.91 0.96

Table 6: Estimated probability from 100 simulations that the optimal sequence
is found in an initial sample of N sequences chosen via two steps of a cross-
entropy optimization algorithm followed by the top M sequences under various
surrogates: PL=Plackett-Luce, RPL=Reverse Plackett-Luce, B=Benter.
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