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PROLIFIC PERMUTATIONS AND PERMUTED PACKINGS:

DOWNSETS CONTAINING MANY LARGE PATTERNS

DAVID BEVAN, CHEYNE HOMBERGER, AND BRIDGET EILEEN TENNER†

Abstract. A permutation of n letters is k-prolific if each (n − k)-subset of the letters in
its one-line notation forms a unique pattern. We present a complete characterization of k-
prolific permutations for each k, proving that k-prolific permutations of m letters exist for
every m > k2/2+2k+1, and that none exist of smaller size. Key to these results is a natural
bijection between k-prolific permutations and certain “permuted” packings of diamonds.

Keywords : permutation, pattern, pattern poset, downset, prolific permutation, packing, per-
muted packing

1. Introduction

The set of permutations of [n] = {1, 2, . . . , n} is denoted Sn. We write a permutation
σ ∈ Sn as a word over [n] in one-line notation, σ = σ(1)σ(2) · · ·σ(n), and say that such a
permutation σ has size n. If π1 and π2 are words of the same size over R, then we write
π1 ≈ π2 to denote that their letters appear in the same relative order. This prompts the
classical notion of pattern containment.

Definition 1.1. Consider π ∈ Sr. A permutation σ ∈ Sn contains the pattern π if there are
indices 1 6 i1 < · · · < ir 6 n such that σ(i1) · · ·σ(ir) ≈ π. If σ contains π, we write π � σ.
If σ does not contain π, then σ avoids π.

From this, it is natural to define the “pattern poset” on permutations.

Definition 1.2. Let the pattern poset, P, be the graded poset over
⋃

k>1 Sk, ordered by the
containment relation �.

By definition, the elements of rank k in P are exactly the elements of Sk.
This paper is concerned with principal downsets of this poset, that is, with the sets of

patterns which lie below a given permutation. In particular, we examine those permutations
whose downset is as large as possible in the upper ranks.

This is related to problems of pattern packing [1, 12], which seek to maximize the to-
tal number of distinct patterns contained in a permutation, and to problems of superpat-
terns [4, 6, 7, 12], which are concerned with determining the size of the smallest permutations
whose downset contains every permutation of some fixed size. Other related work addresses
permutation reconstruction [5, 13, 14], establishing when permutations are uniquely deter-
mined by the (multi)set of large patterns they contain. The reader is referred to the books
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by Bóna [2] and Kitaev [11] for an overview of problems related to the permutation pattern
poset.

It follows immediately from the definition of P that, for a permutation σ ∈ Sn, there are
at most

(

n

k

)

distinct permutations π � σ that lie exactly k ranks below σ in P, since each
such permutation is obtained from σ by the deletion of k letters from the one-line notation
for σ. Our interest is in those permutations of size n which contain maximally many patterns
of size n− k.

Definition 1.3. Fix positive integers n > k > 1. A permutation σ ∈ Sn is k-prolific if
∣

∣

∣

{

π ∈ Sn−k : π � σ
}

∣

∣

∣
=

(

n

k

)

.

Clearly, not every permutation is k-prolific. As a trivial example, the identity permutation
12 · · ·n ∈ Sn contains only one pattern of each size, and thus is never k-prolific for any k < n.

Prolific permutations were previously investigated by the second author in [8]. The present
work corrects and significantly improves upon the results presented there.

Figure 1. The plot of the permutation 274915836.

It is helpful to consider permutations from a graphical perspective.

Definition 1.4. The plot of a permutation σ ∈ Sn is the collection of lattice points {(i, σ(i)) :
1 6 i 6 n} in the Euclidean plane R

2. In practice, we tend to identify the ith entry of a
permutation σ with the point (i, σ(i)) in its plot, and we linearly order the points in a plot
from left to right; that is,

(i, σ(i)) < (j, σ(j)),

if i < j.

See Figure 1 for an illustration of a permutation plot.
This viewpoint motivates the following two definitions concerning the distance between

entries of a permutation.

Definition 1.5. For a permutation σ ∈ Sn and i, j ∈ [n], the distance dσ(i, j) between the
ith and jth entries of σ is given by the L1 distance (the “taxicab” or “Manhattan” distance)
between the corresponding points in the plot of σ:

dσ(i, j) =
∣

∣

∣

∣(i, σ(i))− (j, σ(j))
∣

∣

∣

∣

1
=

∣

∣i− j
∣

∣ +
∣

∣σ(i)− σ(j)
∣

∣.

For example, if σ = 274915836, as in Figure 1, then dσ(1, 2) = 1 + 5 = 6, and dσ(1, 3) =
2 + 2 = 4.
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Definition 1.6. The breadth of σ ∈ Sn, denoted br(σ), is the minimum distance between any
two entries:

br(σ) = min
i,j∈[n]

dσ(i, j).

For example, br(274915836) = 4, and this is realized by any of the pairs of entries

{i, j} ∈ {{1, 3}, {2, 3}, {2, 4}, {3, 6}, {4, 7}, {6, 7}, {6, 8}, {6, 9}, {7, 9}, {8, 9}}.
With these definitions in place, we can state our two primary results. First, we have the

following complete characterization of k-prolific permutations (Theorem 2.22):

A permutation σ is k-prolific if and only if br(σ) > k + 2.

That is, permutations are prolific precisely if their points are not too close together. As a
consequence, it is readily seen that k-prolific permutations of size n are in bijection with
certain packings of diamonds, which we call permuted packings. Section 2 is dedicated to the
proof of this theorem. (This result was previously presented in [8], but the short proof given
there contains an error.)

It is not possible for small permutations to be k-prolific because their points are too close
together. Hence, our second main result is an exact determination of the minimum possible
size of a k-prolific permutation (Corollary 4.3):

The smallest k-prolific permutations have size ⌈k2/2 + 2k + 1⌉.
In Section 3, we prove that every k-prolific permutation must be at least this big (Theo-
rem 3.4). The argument relies heavily on the interpretation of k-prolific permutations as
permuted diamond packings. Then, in Section 4, we present constructions demonstrating
that k-prolific permutations do exist of this size (Theorem 4.2), and also of all greater sizes
(Theorem 4.4).

In the final section of the paper we discuss possible directions for further research, including
some questions concerning permuted packings which may be of independent interest.

2. Characterizing k-prolific permutations

We begin by introducing notation to denote the pattern that results from the deletion of
specified entries from a permutation.

Definition 2.1. For a permutation σ ∈ Sn and i ∈ [n], let σ〈i〉 ∈ Sn−1 be the pattern formed
by deleting the ith entry from σ. Similarly, if A = {i1, i2, . . . , ik} ⊂ [n], then let σ〈A〉 ∈ Sn−k

be the pattern formed by deleting the i1th, i2th, . . ., ikth entries from σ.

The goal of this section is to prove that a permutation is k-prolific if and only if its breadth
is at least k+2. Specifically, we need to demonstrate that, given a permutation σ ∈ Sn, there
exist distinct k-sets of indices A,B ⊂ [n] such that σ〈A〉 = σ〈B〉 if and only if br(σ) < k + 2.

The proof of the “if” direction is straightforward, as is the argument in the “only if”
direction when there is an index common to A and B; we present these later. The next
several pages, leading up to Lemma 2.20 are thus concerned with characterizing the situation
when σ〈A〉 = σ〈B〉 with A and B disjoint. To this end, we introduce a plane graph associated
with such a scenario and determine its structure.

To define this graph, we first need to define what it means for an entry in a permutation
to “fulfill” an entry in a pattern that it contains.
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Definition 2.2. Suppose σ ∈ Sn and A ⊂ [n]. Let [n] \ A = {i1, i2, . . . , ir}, where i1 < i2 <
· · · < ir. For each j ∈ [r], say that the ijth entry of σ fulfills the jth entry of σ〈A〉.

Our graph joins the points of σ that fulfill the “same” point in σ〈A〉 and σ〈B〉.

Definition 2.3. Given a permutation σ ∈ Sn, and disjoint k-sets of indices A,B ⊂ [n], such
that σ〈A〉 = σ〈B〉, the chain graph of σ for A and B is a plane graph on the points in the plot
of σ. For each index i ∈ [n− k], an edge is added between the point of σ that fulfills the ith
entry of σ〈A〉 and the point of σ that fulfills the ith entry of σ〈B〉. If σ〈A〉(i) and σ〈B〉(i) are
fulfilled by the same point, p, of σ, then we call p a fixed point, and no edge is added.

To facilitate the discussion, we let the vertices corresponding to elements of A be coloured
red, and those corresponding to elements of B be coloured blue. The remaining vertices are
uncoloured.

Note that this definition implies that no vertex of a chain graph has degree greater than
two. See Figure 2 for an illustration of a chain graph; its vertex set contains eight red points
(in A), eight blue points (in B), six fixed points, and seventeen other uncoloured points.

Figure 2. An oriented chain graph (Definition 2.3), and a plot of the discrep-
ancy (Definition 2.4) of its vertices. The edges of each chain are oriented away
from its red end-vertex towards its blue end-vertex.

Recall the comment in Definition 1.4 about identifying points in the plot of a permutation
with their x-coordinates, and ordering them from left to right. In a chain graph, these points
are the vertices. Thus, the vertices of a chain graph are also identified by their x-coordinates,
and considered to be ordered from left to right.
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Note that we restrict the definition of a chain graph to settings in which σ〈A〉 = σ〈B〉 = π,
say. In such cases, if the ath entry of σ fulfills the ith entry of σ〈A〉 and the bth entry of σ
fulfills the ith entry of σ〈B〉, then it is also the case that the σ(a)th entry of σ−1 fulfills the
π(i)th entry of σ〈A〉

−1 and the σ(b)th entry of σ−1 fulfills the π(i)th entry of σ〈B〉
−1. Hence,

properties of the chain graph are preserved under permutation inversion, so symmetry may
be invoked to convert “horizontal” arguments into “vertical” ones.

We are interested in determining the properties of chain graphs, with the ultimate goal
of proving that their vertices cannot be too far apart. To investigate their structure, we
introduce the concept of the “discrepancy” of a vertex in a chain graph.

Definition 2.4. For each point p in a chain graph, let nred(p) be the number of red points
to the left of p and nblue(p) be the number of blue points to the left of p. We define the
discrepancy of p, which we denote δ(p), to be the difference, δ(p) = nred(p)− nblue(p).

A plot showing the discrepancy of the vertices in a chain graph is exhibited at the bottom
of Figure 2.

Discrepancy has the properties outlined in the following two observations.

Observation 2.5. If we consider the points from left to right, the discrepancy either increases
by one (after a red point), decreases by one (after a blue point), or stays the same (after an
uncoloured point). Since there are equally many red points as blue points, the discrepancy
returns to zero after the last point.

Thus a plot of the discrepancy is a Motzkin bridge — similar to a Motzkin path, but
permitted to wander both above and below its start point.

Observation 2.6. If the point p (the pth entry of σ) is not red, then it fulfills the entry of
σ〈A〉 that has index a := p − nred(p). Similarly, if p is not blue, then it fulfills the entry of
σ〈B〉 that has index b := p− nblue(p). Hence, p is a fixed point if and only if δ(p) = 0.

If p is not red and δ(p) > 0, then the ath entry of σ〈B〉 is fulfilled by the δ(p)th non-blue point
to the left of p. Similarly, if p is not blue and δ(p) > 0, then the bth entry of σ〈A〉 is fulfilled
by the δ(p + 1)th non-red point to the right of p. The case for negative δ(p) is analogous;
indeed, it is equivalent to the positive case applied to the reverse of the permutation.

We now show that the structure of a chain graph is tightly constrained, and that its name
is justified.

Proposition 2.7. The chain graph of a permutation σ for k-sets A and B consists of k
monotone paths, which we call either increasing or decreasing chains, based on their left-to-
right behaviour, together with one isolated vertex for each fixed point. Each chain has one red
end-vertex and one blue.

Suppose ℓ and r are the left and right end-vertices, respectively, of a chain C. If ℓ is red,
then δ(ℓ) > 0 and for every point q of σ such that ℓ < q 6 r, we have δ(q) > 0. Analogously,
if ℓ is blue, then δ(ℓ) 6 0 and for every point q of σ such that ℓ < q 6 r, we have δ(q) < 0.

Proof. Firstly, each fixed point has degree 0, by definition.
Secondly, each red vertex has degree 1 since it fulfills a point of σ〈B〉, but does not fulfill a

point of σ〈A〉. Analogously, each blue vertex also has degree 1.
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Finally, let p be a non-fixed uncoloured vertex. By Observation 2.6, we know that δ(p) 6= 0
and that p is adjacent to two other vertices, one to its left (which we denote p−), and the other
to its right (denoted p+). So p is a medial vertex in a path whose vertices are ordered from
left to right. By symmetry, p is also medial in a path whose vertices are ordered from bottom
to top. Thus, from left to right, the path is either monotonically increasing or monotonically
decreasing.

Suppose that δ(p) > 0. If there are nr red and nb blue points in [p−, p), then δ(p−) =
δ(p)−nr +nb. Since p

− is the δ(p)th non-blue point to the left of p, we know that nr 6 δ(p).
Thus, δ(p−) > 0. Moreover, δ(p−) = 0 if and only if the δ(p) points immediately to the left of
p, including p−, are all red. Furthermore, for all q ∈ (p−, p), we have δ(q) > 0. By repeating
this argument as long as p− is uncoloured, we see that the left end-vertex, ℓ, of the chain
containing p, is red, and δ(q) > 0 for all q ∈ (ℓ, p].

An analogous argument shows that δ(p+) > 0, and for all q ∈ (p, p+), we have δ(q) > 0.
By iterating this, we see that the right end-vertex, r, of the chain containing p, is blue, and
δ(q) > 0 for all q ∈ (p, r].

As before, the argument for negative δ(p) is equivalent to the positive case applied to the
reverse of the permutation. �

As an example, the chain graph illustrated in Figure 2 consists of seven increasing chains,
one decreasing chain and six isolated fixed points.

As we go forward, in referring to edges in a chain, we make use of the following notation,
as used in the proof of Proposition 2.7.

Definition 2.8. Given a point p in a chain, but not at its rightmost end, write p+ for the
point adjacent to p on its right. Thus, every edge of a chain is pp+ for some point p.

Before stating further properties of chain graphs, we introduce the “span” and “central
span” of a pair of points, and the idea of a point “cutting” an edge.

Definition 2.9. Fix σ ∈ Sn. For any i, j ∈ [n], the span of i and j in σ is the set of entries
of σ whose positions lie strictly between i and j or whose values lie strictly between σ(i) and
σ(j). The central span of i and j in σ is the set of entries of σ whose positions lie strictly
between i and j and whose values lie strictly between σ(i) and σ(j).

Thus, the span of two points consists of the points in a cross-shaped region, and the central
span of two points consists of the points in a rectangular region.

Definition 2.10. Let q be in the span of points p and p′. This q cuts pp′ from the left
(respectively, right) if q’s position is to the left (respectively, right) of both p and p′. This q
cuts pp′ from below (respectively, above) if q’s value is less (respectively, greater) than both
σ(p) and σ(p′). Cuts from the left or right are horizontal ; cuts from below or above are
vertical. Points in the central span of p and p′ are considered to cut pp′ both horizontally and
vertically.

There is a close relationship between cutting and the distance between two points.

Observation 2.11. The distance dσ(p, p
′) is two greater than the number of times that pp′

is cut.
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With these definitions in place, we can state two elementary corollaries of Proposition 2.7.
These are the first of several results characterizing how edges of chains may be cut, which we
use later to prove that some pair of points in a chain graph must be close together.

Corollary 2.12. An edge of a chain C cannot be cut by another point from C.

Corollary 2.13. An edge of a chain cannot be cut by a fixed point.

In light of the fact that one end-vertex of each chain is red and the other is blue, it makes
sense to orient the edges of a chain graph. We choose to orient the edges of each chain away
from its red end-vertex and towards its blue end-vertex. In Figure 2, five chains are oriented
leftwards and three rightwards, while six are oriented upwards and two downwards.

We now show that chains in an oriented chain graph are further constrained by having to
satisfy a “consistent orientation” property.

Proposition 2.14. Suppose that C and C ′ are chains in the chain graph of a permutation σ,
with left end-vertices ℓ and ℓ′ and right end-vertices r and r′, respectively. If ℓ < r′ and ℓ′ < r
(that is, if C and C ′ overlap horizontally), then either both chains are oriented leftwards or
both chains are oriented rightwards. Analogously, if two chains overlap vertically, then either
they are both oriented upwards or they are both oriented downwards.

Proof. Without loss of generality, suppose that ℓ is red. By Proposition 2.7, for every point q
of σ that lies strictly between ℓ and r, we have δ(q) > 0. Now, if ℓ′ were blue, then, similarly,
for every point q′ of C ′, we would have δ(q′) 6 0. But, since C and C ′ overlap horizontally,
there is some point of C ′ between the end-vertices of C, so ℓ′ must in fact be red.

The vertical case follows by symmetry. �

This consistent orientation property has consequences for how edges of chains may be cut.

Corollary 2.15. If C is an increasing chain and C ′ is a decreasing chain, then it is not pos-
sible for C and C ′ to overlap both horizontally and vertically. Thus, an edge of an increasing
chain C cannot be cut both horizontally and vertically by points from a decreasing chain C ′.

Corollary 2.16. If C1 and C2 are increasing chains that overlap (either horizontally or
vertically), and C ′ is a decreasing chain, then it is not possible for there to be points q1 and
q2 of C ′ such that q1 cuts an edge of C1 horizontally and q2 cuts an edge of C2 vertically.

Chains in a chain graph also satisfy an “interleaving” property, which implies that two
chains cannot cross. Recall the linear ordering of points from Definition 1.4.

Proposition 2.17. If pp+ and qq+ are edges in distinct chains such that p < q, then p+ < q+.

Proof. If p+ < q, then the result follows trivially. Assume that q < p+. Without loss of
generality, suppose that δ(p+) > 0, and hence δ(q+) > 0.

Suppose p+ were to the right of q+. Let d be the difference between their x-coordinates,
and let nb be the number of blue points in the interval [q+, p+).

Then, δ(p+) 6 δ(q+) + d− 2nb, with a strict inequality if nb = 0, since q+ cannot be red.
Point p is the δ(p+)th non-blue point to the left of p+. Since there are d − nb non-blue

points in [q+, p+), it is the case that p is no further to the left than the (δ(q+)−nb)th non-blue
point to the left of q+.

But q is the δ(q+)th non-blue point to the left of q+, which means that p is to the right
of q, a contradiction. �
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Corollary 2.18. By symmetry, if p is above and to the left of q, then p+ is above and to the
left of q+. Thus chains cannot cross.

The interleaving property further restricts the ways in which an edge of a chain may be
cut by points from another chain.

Corollary 2.19. An edge of a chain C can be cut at most once horizontally and at most once
vertically by points from some other chain C ′.

Observe that if C is an increasing chain, and e is an edge of another chain, then it is only
possible for points of C to cut e either from the left and from above, or else from the right
and from below.

Corollary 2.19, together with Corollaries 2.12, 2.13, 2.15, and 2.16, completes our charac-
terization of how edges of chains may be cut. We are now able to prove that the points in a
chain graph cannot be very far apart.

Lemma 2.20. Suppose we have a permutation σ, and disjoint k-sets of indices A and B,
such that σ〈A〉 = σ〈B〉. Then br(σ) < k + 2.

Proof. Assume, to the contrary, that br(σ) > k + 2.
Let G be the chain graph of σ for A and B, and let e = pp+ be an edge of a chain C of G.

Without loss of generality, suppose that C is an increasing chain.
Since dσ(p, p

+) > k+2, the edge e is cut by at least k vertices. By Corollaries 2.12 and 2.13,
e is not cut by a point of C or by a fixed point. There are only k − 1 chains in G distinct
from C, so, by the pigeonhole principle, there is at least one chain, C ′, whose points cut e
twice. By Corollary 2.15, C ′ is an increasing chain, and by Corollary 2.19, one cut must be
horizontal and the other vertical.

First, suppose that a point q of C ′ cuts e both horizontally and vertically; that is, this q is
in the central span of p and p+. Now, e can be cut by at most k − 1 points horizontally, one
from each chain, and similarly by at most k − 1 points vertically, so dσ(p, p

+) 6 2k. Thus,
since dσ(p, p

+) = dσ(p, q) + dσ(q, p
+), either dσ(p, q) 6 k or dσ(q, p

+) 6 k, and so br(σ) 6 k,
a contradiction. Thus, there is no point in the central span of p and p+, and e is cut by two
distinct points of C ′.

Suppose now that G contains m increasing chains and d := k−m decreasing chains. With-
out loss of generality, we may assume that m > 1. For an illustration of the argument that
follows, see Figure 3. Note that this figure includes no decreasing chains. In fact, decreas-
ing chains can essentially be ignored, although proving this is more work than accounting
for them explicitly. For brevity in what follows, we call a point of an increasing chain an
increasing point, and a point of a decreasing chain a decreasing point.

Let p1 be the lowermost increasing point in G, and let e1 be the edge p1p
+
1 . Then, for each

j = 2, . . . , m, let pj be the lowermost increasing point that cuts ej−1 from the left (we show
that such a point always exists), and set ej := pjp

+
j . Our goal is to prove that, for each j,

the edge ej is not cut from below by any increasing point. We proceed by induction on j.
For the base case, it follows from the definition of p1 and the fact that the central span of

p1 and p+1 is empty that e1 is not cut from below by any increasing point.
Now, fix j > 1 and assume that ej is not cut from below by any increasing point.
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p1

p+1
e1

p2

p+2e2
p3

p+3e3p4

p+4e4

Figure 3. An illustration of the second half of the proof of Lemma 2.20, for
k = m = 4.

Since ej is not cut from below by an increasing point, points of some increasing chain must
cut ej from both the left and from above. So there exists a lowermost increasing point that
cuts ej from the left, namely pj+1.

Suppose that ej is cut from the right by rj increasing points and cut horizontally by hj

decreasing points. By the definition of pj+1, these are the only points that can occur above
pj and below pj+1, so σ(pj+1)−σ(pj) 6 rj +hj +1. Hence, since dσ(pj , pj+1) > k+2, we have

pj − pj+1 > (k + 2) − (rj + hj + 1) = k + 1− rj − hj .

Now suppose that ej+1 is cut vertically by vj+1 decreasing points. By Proposition 2.16, we
know that hj+vj+1 6 d. Observe that ej+1 is cut from above by at most m−1−rj increasing
points, the rj chains cutting ej from the right also being to the right of ej+1. Hence,

p+j+1 − pj+1 6 m− 1− rj + vj+1 + 1 6 m− rj + d− hj = k − rj − hj .

Thus,

pj − p+j+1 > (k + 1− rj − hj) − (k − rj − hj) = 1.

Thus, p+j+1 is to the left of pj, so ej+1 is not cut from below by pj.

Moreover, since the central span of pj+1 and p+j+1 is empty, the edge ej+1 is not cut from
below by any other increasing point. This is because, otherwise, either p1 would not be the
lowermost increasing point in G, or else p2, . . . , pj+1 would not be the lowermost increasing
points cutting e1, . . . , ej from the left.

Now consider the final edge em = pmp
+
m. By the same inductive argument, it too is cut

from the left by some increasing point pm+1. But this is impossible, because there are only
m increasing chains in G. Hence, our initial assumption is false, and thus br(σ) < k + 2. �

Having established the desired result when A and B are disjoint, we now have almost all
we need to establish the relationship between the breadth of a permutation and whether that
permutation is k-prolific or not. The final ingredient is the following proposition, adapted
from [8].
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Proposition 2.21. Deleting a single entry from a permutation decreases the breadth by at
most one.

Proof. Let σ be a permutation having breadth b, and let i and j be indices such that dσ(i, j) =
b. The only way to decrease the distance between these entries through deletion is to delete an
element of their span. To decrease the distance by two would require deleting a point, p, from
their central span. But if there were such an point, then we would have dσ(i, p) < dσ(i, j),
and br(σ) would be less than b. �

Here, finally, is our first main result: a complete characterization of k-prolific permutations.

Theorem 2.22. A permutation σ is k-prolific if and only if br(σ) > k + 2.

Proof. First suppose that i 6= j are such that dσ(i, j) < k + 2. Let S be the set of elements
of σ in the span of i and j. It follows that |S| < k. But we have σ〈S∪{i}〉 = σ〈S∪{j}〉, so σ is
not k-prolific.

In the other direction, we proceed by induction on k.
For the base case, suppose that br(σ) > 3, but that σ is not 1-prolific; that is, there exists

i 6= j such that σ〈i〉 = σ〈j〉. Assume without loss of generality that i < j and σ(i) < σ(j).
The (j − 1)th entry of σ〈i〉 is σ(j) − 1, while the (j − 1)th entry of σ〈j〉 is σ(j − 1). But if
σ(j)− 1 = σ(j − 1), then

br(σ) 6 dσ(j, j − 1) =
∣

∣j − (j − 1)
∣

∣ +
∣

∣σ(j)− σ(j − 1)
∣

∣ = 2,

a contradiction. Therefore σ must be 1-prolific.
Now fix k > 1 and assume that, for any permutation τ , if br(τ) > k + 1, then τ is (k − 1)-

prolific. Suppose that the breadth of σ is at least k + 2, but that σ is not k-prolific; that is,
there are distinct k-sets A and B such that σ〈A〉 = σ〈B〉.

If there is an index c ∈ A ∩ B, then σ′ = σ〈c〉 is (k − 1)-prolific, by Proposition 2.21 and
the induction hypothesis. But

σ′
〈A\{c}〉 = σ〈A〉 = σ〈B〉 = σ′

〈B\{c}〉,

so σ′ cannot be (k − 1)-prolific. Thus A and B must be disjoint.
The result then follows by Lemma 2.20. �

As a consequence of this characterization, we see that any permutation of size n containing
maximally many patterns of size n− k also contains maximally many larger patterns.

Corollary 2.23. If σ is k-prolific, then σ is also j-prolific for all 1 6 j < k.

3. Bounding the size of k-prolific permutations from below

In this section, we determine a lower bound on the size of k-prolific permutations. We use
the following notation to denote the size of the smallest k-prolific permutation.

Definition 3.1. Given a positive integer k, let minprol(k) be the minimum value n for which
there exists a k-prolific permutation in Sn.

Clearly, for a k-prolific permutation of size n to exist, we need (n−k)! >
(

n

k

)

. This inequality
yields a very weak lower bound on minprol(k), which can, using Stirling’s approximation, be

shown to grow like k + e
√
k for large k. Nevertheless, in conjunction with the fact that both
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2413 and 3142 cover all four non-monotone permutations in S3, it is sufficient to determine
that minprol(1) = 4.

We now establish a much tighter lower bound on minprol(k) by recasting Theorem 2.22 in
terms of packings of diamonds. Recall that a translational packing with a tile (a compact
non-empty subset of R2) is a collection of translates of the tile whose interiors are mutually
disjoint (see [3]). We are interested in translational packings in which the tiles are centered
on the points of a permutation.

Definition 3.2. A translational packing Π, consisting of n translates of a tile T , is a permuted
packing if there exists a permutation σ ∈ Sn such that Π = {T + (i, σ(i)) : 1 6 i 6 n}.

The following proposition establishes the relationship between k-prolific permutations and
permuted packings.

Proposition 3.3. Let D be a diamond whose diagonal has length k + 2. The family of k-
prolific permutations of size n is equinumerous to the family of permuted packings that consist
of n translates of D.

Proof. By Theorem 2.22, a permutation is k-prolific if and only if the minimum L1 distance
between two points in the plot of the permutation is at least k + 2. Thus, if we center a ball
of radius k/2 + 1 (under the L1 metric) at each point of the plot, the interiors of these balls
are mutually disjoint. Since, in R

2, an L1 ball of radius k/2+ 1 is a diamond whose diagonal
has length k + 2, it is readily seen that this construction yields a bijection between k-prolific
permutations of size n and the specified family of permuted packings. �

Figure 4 depicts a 6-prolific permutation and the corresponding permuted diamond packing.
Using this characterization of k-prolific permutations, we now boundminprol(k) from below.

Theorem 3.4. For each positive integer k, minprol(k) > ⌈k2/2 + 2k + 1⌉ .
Proof. Suppose that σ ∈ Sn is k-prolific. Let s = k/2 + 1 be the length of the semidiagonals
of the diamonds in the associated permuted packing. The area of each of the n diamonds in
the packing is 2s2.

Consider the square box [s − 1, n + 2 − s]2, centered over the packing, as illustrated in
Figure 4. The margins around this box have width k. Note that when k is even, s is an
integer and the sides of the box pass through the centers of four of the diamonds; when k is
odd, they do not.

The total area of the diamond tiles is bounded above by the area of this square box plus the
total area of the parts of the diamonds that “overflow” into the margins outside the box. The
overflowing parts are shaded more darkly in Figure 4. The area of the parts of the diamonds
in a given margin can be calculated exactly, as follows.

Consider the region to the left of the left side of the box, including the top left and bottom
left corners. In this margin are parts of each of the diamonds centered at the first k points
of σ. For each j < k/2, the overflowing part of the jth diamond from the left and the
overflowing part of the (k− j)th diamond can be glued together to form a complete diamond.
For example, in Figure 4, the two parts labelled a form a complete diamond, as do the two
labelled b. If k is even, then the overflowing part of the (k/2)th diamond is exactly half a
diamond. Finally, the overflowing part of the kth diamond is a triangle with area 1. Thus,
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4

4

a

b

b

a

Figure 4. The permuted diamond packing corresponding to a 6-prolific per-
mutation, showing the square box used in the proof of Theorem 3.4.

the total area of the parts of the diamonds that overflow into any one margin is given by
(

k−1
2

)

· 2s2 + 1 = (k − 1)s2 + 1.

The total area of all of the parts of the diamonds that overflow is no more than four times
this, a value which counts the contributions from the corners twice. Therefore, we have the
inequality

2s2n 6 (n+ 3− 2s)2 + 4
(

(k − 1)s2 + 1
)

.

After substitution for s and application of the quadratic formula, this yields

n >
k2 + 8k +

√
k4 + 32k − 16

4
,

an expression which exceeds k2/2 + 2k for all k > 1/2.
Since minprol(k) is an integer, for even k we thus have minprol(k) > k2/2 + 2k + 1, as

required, and for odd k, minprol(k) > k2/2 + 2k + 1/2.
A marginally greater lower bound can be established for odd k by using a slightly different

shape of tile. If k is odd, then the length of the semidiagonal of the diamonds, s = k/2+1, is
a half-integer. Since, in the packing, each diamond is centered on an integer lattice point, it is
not possible for three of these diamonds to meet at a point. Thus, either above or below the
rightmost corner of each of these diamonds is a small diamond-shaped region, of semidiagonal
length 1/2, not covered by any diamond tile. We thus extend the tiles by the addition of
these regions, which we call extensions, and consider permuted packings of these extended
diamonds. See Figure 5 for an illustration.
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Figure 5. A permuted packing of extended diamonds corresponding to a 5-
prolific permutation.

For these extended diamonds, we now repeat our analysis of the parts of the tiles that
overflow into the margins. The total area of the parts of the diamond-shaped extensions to
the right of the box is k/2 + 1/4, made up of k complete extensions, each of area 1/2, and
half an extension from the (k + 1)th diamond from the right. The contribution from the
extensions that overflow into the top margin is at most k/4, made up of (k − 1)/2 complete
extensions and half an extension. The bottom margin is analogous. Since no extension can
overflow into the left margin, the total area of the parts of the extensions that overflow is no
more than k + 1/4. Therefore, accounting for the additional area of each tile, we have the
inequality

(2s2 + 1/2)n 6 (n + 3− 2s)2 + 4
(

(k − 1)s2 + 1
)

+ k + 1/4.

After substitution for s and the application of the quadratic formula, this yields

n >
k2 + 8k + 1 +

√
k4 + 2k2 + 32k − 19

4
,

an expression which exceeds k2/2 + 2k + 1/2 for all k > 5/8.
Since minprol(k) is an integer, for odd k we thus have minprol(k) > k2/2 + 2k + 3/2, as

required. �

4. Constructions of k-prolific permutations

In this section, we establish that there is a k-prolific permutation of every size greater than
or equal to the lower bound of Theorem 3.4, by construction.

Let m(k) = ⌈k2/2 + 2k + 1⌉ be the lower bound function from Theorem 3.4. Our initial
constructions enable us to prove that minprol(k) = m(k).
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Definition 4.1. For each k > 1, define σk as follows. For i = 1, . . . , m(k), let

σk(i) =

{

i(k + 2) mod m(k) + 1, if k is odd, and

i(k + 1) mod m(k) + 1, if k is even.

See Figure 6 for an illustration of σ5 and σ6. We claim that σk is a k-prolific permutation
of size m(k).

First, we must prove that σk is indeed a permutation; that is, that σk(i) takes a distinct
value for each i. To do so, it is sufficient to show that k+2 is coprime to m(k) + 1 when k is
odd, and that k + 1 is coprime to m(k) + 1 when k is even. Observe that for odd k, we have

2
(

k2/2 + 2k + 5/2
)

+ (−k − 2)
(

k + 2
)

= 1,

and for even k,

2
(

k2/2 + 2k + 2
)

+ (−k − 3)
(

k + 1
)

= 1.

Thus, by Bézout’s Lemma, the relevant terms are coprime.
To demonstrate that each σk is k-prolific, we use an alternative characterization of the

permutations, in terms of two interlocking grids of lattice points as illustrated in Figure 6.

p1

v

p2

u

p1

v

p2

u

Figure 6. Plots of the permutations σ5 ∈ S24 and σ6 ∈ S31, showing their
construction from two interlocking grids of lattice points.

For odd k, define the four vectors

p1 = (1, k + 2), p2 =
(

k+3
2
, k+1

2

)

, u = (k + 2,−1), v = (1, k + 2).

Now let

Γ1 =
{

p1 + qu+ rv : 0 6 q 6 k+1
2
, 0 6 r 6 k−1

2

}

,

Γ2 =
{

p2 + qu+ rv : 0 6 q 6 k−1
2
, 0 6 r 6 k+1

2

}

be two finite grids of lattice points.
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We claim that Γ1 ∪ Γ2 is the plot of σk. Indeed, for 1 6 i 6 m(k), if

q = ⌊(i− 1)/(k + 2)⌋ and r = (i− 1) mod (k + 2),

then

(i, σk(i)) =

{

p1 + qu+ rv, if r 6 k−1
2
, and

p2 + qu+
(

r − k+1
2

)

v, otherwise.

Similarly, for even k, define the four vectors

p1 = (1, k + 1), p2 =
(

k
2
+ 2, k

2

)

, u = (k + 3,−1), v = (1, k + 1),

and let

Γ1 =
{

p1 + qu+ rv : 0 6 q 6 k
2
, 0 6 r 6 k

2

}

,

Γ2 =
{

p2 + qu+ rv : 0 6 q 6 k
2
− 1, 0 6 r 6 k

2
+ 1

}

.

Now, for 1 6 i 6 m(k), if

q = ⌊(i− 1)/(k + 3)⌋ and r = (i− 1) mod (k + 3),

then

(i, σk(i)) =

{

p1 + qu+ rv, if r 6 k
2
, and

p2 + qu+
(

r − k
2
− 1

)

v, otherwise.

Thus, for each k, the plot of σk is given by Γ1 ∪ Γ2. We now use this characterization to
bound minprol(k) from above.

Theorem 4.2. For each positive integer k, the permutation σk is k-prolific.

Proof. By Theorem 2.22, we need only show that the breadth of σk is at least k + 2. Let x
and y be distinct points of σk.

Recall that the points in the plot of σk are partitioned into two sets, Γ1 and Γ2. If x and y
both lie in the same set, then their positions in the plot differ by a nonzero integer linear
combination qu+ rv. Thus, the L1 distance between these points is given by

dσk
(x, y) =

∣

∣qa+ r
∣

∣ +
∣

∣rb− q
∣

∣,

where

(a, b) =

{

(k + 2, k + 2) if k is odd, and

(k + 3, k + 1) if k is even.

If q = 0, then |r| > 1, because x 6= y. In that case, dσk
(x, y) = |r|+ |rb| > 1 + b. Similarly,

if r = 0, then |q| > 1 and dσk
(x, y) = |qa| + |q| > a + 1. Suppose now that both |q| and

|r| are nonzero. Without loss of generality, we may assume that r > 1. If q > 1, then
dσk

(x, y) > |qa+ r| > a+ 1. If, on the other hand, q 6 −1, then dσk
(x, y) > |rb− q| > b+ 1.

In each case, we have dσk
(x, y) > k + 2.

Now suppose, without loss of generality, that x ∈ Γ1 and y ∈ Γ2. In this case, their
positions in the plot differ by a vector p1 − p2 + qu + rv, for some integers q and r. Thus,
the L1 distance between these points is given by

dσk
(x, y) =

∣

∣qa− c+ r
∣

∣ +
∣

∣rb+ d− q
∣

∣,
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where

(c, d) =

{

(

k+1
2
, k+3

2

)

if k is odd, and
(

k
2
+ 1, k

2
+ 1

)

if k is even.

The possible distances can be partitioned into the following five cases:

dσk
(x, y) = k + 2, if 0 6 q 6 1 and −1 6 r 6 0,

dσk
(x, y) > |qa− c+ r| > 2a− c− 1, if q > 2 and r > −1,

dσk
(x, y) > |rb+ d− q| > b+ d− 1, if q 6 1 and r > 1,

dσk
(x, y) > |qa− c+ r| > a+ c, if q 6 −1 and r 6 0,

dσk
(x, y) > |rb+ d− q| > 2b− d, if q > 0 and r 6 −2.

Again, in each case, we have dσk
(x, y) > k + 2.

Therefore, the permutation σk has breadth k+2, and so, by Theorem 2.22, it is k-prolific.
�

This construction determines an upper bound on the size of the smallest k-prolific permu-
tation. Together with the lower bound of Theorem 3.4, it establishes the value of minprol(k)
exactly.

Corollary 4.3. For each positive integer k, the smallest k-prolific permutations have size
⌈k2/2 + 2k + 1⌉.

The first few terms of this sequence are 4, 7, 12, 17, 24, 31, 40, 49. It is sequence A074148
in [16].

Clearly, any symmetry of σk is k-prolific. However, for even k > 6, these permutations are
not the only k-prolific permutations of minimal size.

See Figure 7 for an illustration of another 6-prolific permutation of size 31.

Figure 7. An alternative 6-prolific permutation in S31.

It is not immediately obvious that k-prolific permutations exist of every size greater than
or equal to minprol(k). We conclude this section by briefly presenting a construction that
demonstrates that this is, in fact, the case.
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Theorem 4.4. There is a k-prolific permutation of every size greater than or equal to
⌈k2/2 + 2k + 1⌉.

Proof. We construct a k-prolific permutation, σ+j
k , of size minprol(k) + j, for each k > 1 and

j > 0.
Let σ+0

k = σk. For j > 0, the permutation σ+j+1
k is constructed by inserting a new first

entry immediately above the (k + 2)th entry of σ+j
k , if k is odd, or immediately above the

(k + 3)th entry of σ+j
k , if k is even. See Figure 8 for an illustration.

We leave as an exercise for the reader the rather tedious details of the proof that this
construction never leads to a reduction in the breadth of the permutation.

Furthermore, it can be shown that the breadth eventually increases: if k is odd, then σ+k+2
k

is (k + 1)-prolific, and, if k is even, then σ+k+3
k is (k + 1)-prolific. �

Figure 8. Plots of the 3-prolific permutations σ+j
3 , for j = 0, . . . , 5; note that

σ+5
3 is, in fact, 4-prolific.

5. Directions for further research

In Section 4, we noted that σk and its symmetries were not necessarily the only k-prolific
permutations of minimal size. However, for odd k, no additional k-prolific permutations of
size minprol(k) are known. This prompts the following conjecture.

Conjecture 5.1. For each odd k, the permutation σk (described in Definition 4.1) and its
symmetries are the only k-prolific permutations of minimal size.

More generally, we wonder whether it is possible to enumerate and characterize all minimal
k-prolific permutations.

Question 5.2. For each k, how many distinct k-prolific permutations of minimal size are
there, and what are they?

Another topic of potential interest concerns the presence of k-prolific permutations in
specific permutation classes (sets closed downwards in the pattern poset P). For example,
there appear to be no 1-prolific permutations avoiding 132, and no 2-prolific permutations
avoiding 123. This motivates the following question.

Question 5.3. For each k, which principal permutation classes (those avoiding a single
pattern) contain k-prolific permutations?



18 D. BEVAN, C. HOMBERGER, AND B. E. TENNER

In various guises, the enumeration of 1-prolific permutations (sequence A002464 in [16]) has
been well-studied ever since Kaplansky’s 1944 paper addressing the “n king problem” [9, 10].
Tauraso [15] presents complete asymptotics. For large n, the proportion of permutations of
size n which are 1-prolific is

e−2

(

1 − 2

n2
− 10

3n3
− 6

n4
− 154

15n5
+ O

(

1

n6

))

.

However, nothing specific appears to be known about the enumeration of k-prolific permu-
tations for larger k, although elementary considerations suggest that the number of k-prolific
permutations of size n is asymptotically e−k2−kn!.

Question 5.4. For a given k > 1, how does the number of k-prolific permutations of size n
grow with n?

The notion of being k-prolific can also be transferred to the context of other graded posets,
an element of rank n being k-prolific if it has maximally many children of rank n − k.
The characterization of the k-prolific elements of various combinatorial posets, perhaps most
obviously those relating to the various subgraph orders, may be of interest.

Finally, permuted packings also invite further investigation. In addition to the permuted
diamond packings studied here, one might consider permuted packings of other regular tiles.
Permuted packings of axis-parallel squares appear uninteresting. On the other hand, per-
muted circle packings raise some intriguing questions. See Figure 9 for an illustration.

Figure 9. Minimal permuted packings of circles of diameter
√
17 and

√
18 + ε.

Recall that the density of a packing Π relative to a bounded domain D is defined as

d(Π, D) =

∑

T∈Π µ(T ∩D)

µ(D)
,

where µ(X) is the area of X (see [3]).
Let us call a permuted packing of minimal cardinality aminimal permuted packing. Among

other problems, one that is particularly attractive would be to determine how poor a minimal
permuted packing can be, asymptotically as the radius of the circular tiles tends to infinity.

Question 5.5. What is the value of

lim inf
ρ→∞

d(Πρ, [1, nρ]
2),
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where Πρ is a minimal permuted packing of circles of radius ρ, and nρ is the number of circles
in such a packing?

Similar questions might be asked about permuted packings of regular hexagons.
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