
ar
X

iv
:q

u
an

t-
p
h
/0

2
0
7
1
7
5
 v

1
  
 3

0
 J

u
l 

2
0
0
2

Retrodiction with two-level atoms: atomic previvals

John Jeffers1, Stephen M. Barnett1 and David T. Pegg2

1 Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 ONG,

United Kingdom.

2 Faculty of Science, Griffith University, Nathan, Brisbane, Q111, Australia.

(June 28, 2006)

Abstract

In the Jaynes-Cummings model a two-level atom interacts with a single-mode

electromagnetic field. Quantum mechanics predicts collapses and revivals in

the probability that a measurement will show the atom to be excited at var-

ious times after the initial preparation of the atom and field. In retrodictive

quantum mechanics we seek the probability that the atom was prepared in a

particular state given the initial state of the field and the outcome of a later

measurement on the atom. Although this is not simply the time reverse of

the usual predictive problem, we demonstrate in this paper that retrodictive

collapses and revivals also exist. We highlight the differences between predic-

tive and retrodictive evolutions and describe an interesting situation where

the prepared state is essentially unretrodictable.
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I. INTRODUCTION

The rapid development of quantum information theory in recent years has given fresh

impetus to the study of retrodictive quantum theory. A retrodictive quantum formalism

was first proposed more than 30 years ago, and others have followed [1]. Recently its utility

has been extended by the application of Bayes’ theorem [2] to the conditional probabilities

derived using predictive quantum theory [3]. The theory applies to closed systems, and also

to open systems in which the system of interest interacts with an unmeasured environment

[4–6].

Normally we want to predict the future based on our knowledge of the present, so in

predictive quantum theory the state of the system at any time between preparation and

measurement is the evolved prepared state. Sometimes, however, our knowledge of initial

states is not complete. If we know the result of a measurement of the state we can assign a

retrodictive state on the basis of the measurement outcome. Each measurement outcome has

associated with it a probability operator measure (POM) element [7]. It is possible to prove

using Bayes’ theorem [2] that the retrodictive density operator is simply the normalised POM

element [3]. For closed systems this state evolves backwards in time to the preparation time

according to the Schrödinger equation, when it collapses on to one of a set of possible initially

prepared states. Normally the predictive and retrodictive states assigned to a system at a

particular time between preparation and measurement will be different.

For open systems the evolution is more complicated. The simple time-reversal property of

closed systems does not apply. In general the system to be measured interacts with another

unmeasured system usually called the environment, which is traced out of the problem to

give the (nonunitary) evolution of the system of interest. This evolution is governed by a

master equation for the system density operator. We have recently derived methods for

solving retrodictive problems in open systems based on standard predictive master equation

techniques [4]. Furthermore, we have derived a retrodictive master equation which traces

the evolution of such systems backwards in time [6].
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These master equation methods have been used to prove that optical amplifiers and

attenuators are predictive/retrodictive inverses of one another [5]. Also, retrodiction from

measured atomic states, for a two-level atom interacting with an environment which consists

of a multimode electromagnetic field, has been studied [4]. This system illustrates various

general principles of retrodictive open systems. In particular, if nothing is known about

the initial state of the system the retrodictive steady state is usually the no-information

state. This is an equally-weighted mixture of all the possible input states. In addition, the

retrodictive decay rate depends upon the measurement outcome. There are also properties

peculiar to this two-level system. If the atom is illuminated with coherent light retrodictive

Rabi oscillations occur, which decay eventually to the no-information state.

In this paper we concentrate in particular on the two-level atom interacting with a single

cavity mode of the quantised electromagnetic field. In standard predictive quantum theory, if

the evolution of the atomic state is driven by a known coherent field, Rabi oscillations occur

both in the atomic population, and in the off-diagonal atomic coherences. The frequency

of the oscillations increases with the square root of the number of quanta of energy in the

system. For a coherent driving field the number of photons is not completely certain; rather

the field is in a weighted superposition of all photon number states. After a short time the

different Rabi oscillations for each of the number states within the superposition get out

of phase with one another and the oscillations of the whole system collapse. Later, when

sufficient time has elapsed so that the oscillations get back into phase, there is a revival of

the oscillating atomic population [8–10]. Here we look at this system from the retrodictive

point of view, where we measure the final state of the atom knowing nothing about its initial

state. The field is initially in a coherent state, but it is not measured after the interaction.

The retrodictive situation is not the time-reverse of the predictive situation because we have

different knowledge in the two cases. In the retrodictive situation we know the initial state of

the field and the final measured state of the atom, whereas in the predictive case these states

are both known at the initial time. This poses an interesting question. Would we retrodict

that the retrodictive Rabi oscillations were in phase at times prior to the measurement of
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the field state, that is, would we retrodict any “previvals”?

The paper is organised as follows. In Section (II) we briefly describe the general features

of retrodictive quantum theory, and its application to the two-level atom interacting with

an electromagnetic field. We apply this in Section (III) and give results for the retrodic-

tive density matrix and preparation probabilities. Section (IV) contains a summary and

discussion of the main results of the paper.

II. PREDICTION AND RETRODICTION

In this section we provide brief details of retrodictive quantum theory. A fuller account

can be found in references [3] and [4]. Suppose that we have a preparation device which

produces output states ρ̂
pred
i with prior probabilities P (i), where ρ̂

pred
i is the usual density

operator of predictive quantum mechanics. This state can evolve and interact with other

systems until it is measured by a measuring device. A general description of a measurement

is given by a measurement POM [7]. This is a set of non-negative definite, Hermitian

elements Π̂j which sum to the unit operator, each element corresponding to a particular

measurement outcome. In general there is no requirement that there be the same number

of POM elements as there are states which span the system space, but for von Neumann

measurement this is so, and the POM elements are simply the projectors of the particular

chosen states which span the space. Suppose that preparation takes place at time tp and

measurement at a later time tm. Within this framework the predictive probability that the

measurement outcome Π̂j is obtained given that the state ρ̂
pred
i was prepared is

P (j|i) = Tr
(

ρ̂
pred
i (tm)Π̂j

)

, (1)

where

ρ̂
pred
i (tm) = Û(τ)ρ̂

pred
i (tp)Û †(τ) (2)

is the evolved initial density operator and
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Û(τ) = exp
(

− i

h̄
Ĥτ

)

(3)

is the evolution operator, which operates for the length of time between preparation and

measurement, τ = tm − tp.

Suppose that instead of calculating the predictive probability P (j|i) we wish to calculate

the retrodictive conditional probability P (i|j) that the state ρ̂
pred
i was prepared, given

our measurement result Π̂j . It is possible to do this by calculating all possible predictive

conditional probabilities for the system, and then using Bayes’ theorem. A simpler and more

natural approach is to use retrodictive quantum theory, so that the required probability can

be written [3,4]

P (i|j) =
Tr
[

Λ̂iρ̂
retr
j (tp)

]

Tr
[

Λ̂ρ̂retr
j (tp)

] . (4)

Here the operator Λ̂i is the preparation device operator, and

Λ̂ =
∑

i

Λ̂i =
∑

i

P (i)ρ̂
pred
i , (5)

is the a priori density operator, the sum of each possible preparation density operator

weighted by its prior probability of production. Λ̂ is the best description of the state we

can give without knowing the outcome of the preparation or measurement. The retrodic-

tive density operator at the preparation time is simply the normalised measurement POM

element evolved back from the measurement time to the preparation time,

ρ̂retr
j (tp) = Û †(τ)ρ̂retr

j (tm)Û(τ), (6)

with

ρ̂retr
j (tm) =

Π̂j

TrΠ̂j

. (7)

The above formulae for the conditional probabilities (eqs. (1) and (4)) apply equally well

for open systems, where the system of interest interacts with an unmeasured environment

with many degrees of freedom. If this environment causes information to be lost about the
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system, and the Born-Markov approximation holds, then the the evolved density operators

are the solutions of master equations [11]. In eq.(1) the density operator required for such

an open system, which for a closed system would be given by eq. (2), is the solution of

the usual master equation forwards in time from the preparation time to the measurement

time. However, in eq.(4) the solution required instead of eq. (6) is that of the retrodictive

master equation, giving the evolution backwards in time from the measurement time to the

preparation time. We have recently derived this equation from the general principle that

conditional probabilities should be independent of the time of collapse of the wavefunction

[6]. In the system considered in the present paper, however, the Born-Markov approximation

is not made, and so we must consider the full evolution of the coupled atom-field system.

III. RETRODICTION FOR THE COUPLED ATOM-FIELD SYSTEM

Here we apply the retrodictive formalism to a coupled system consisting of a two-level

atom and a single cavity mode of an electromagnetic field. The interaction between an atom

with upper level |e〉 and lower level |g〉, and an electromagnetic field is governed by the

Jaynes-Cummings Hamiltonian [11]. In the interaction picture this is

Ĥ =
h̄∆

2
σ̂3 − ih̄λ

(

σ̂+â − â†σ̂−
)

, (8)

where ∆ is the detuning between the atomic frequency and the light, σ̂3 = |e〉〈e|−|g〉〈g| is the

atomic inversion operator, σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are the atomic raising and lowering

operators, â† and â are the creation and annihilation operators for the single mode field,

and λ is the coupling constant. The rotating wave approximation, which has been made in

deriving this Hamiltonian, ensures that whenever a photon is lost from the field the atomic

state must change from |g〉 to |e〉. In the standard predictive picture of quantum mechanics

a coupled atom-field system evolves forwards in time according to this Hamiltonian from a

preparation time tp to a measurement time tm. After this has happened the coupled density

operator for the whole system is
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ρ̂
pred
af (tm) = Û(τ)ρ̂

pred
a (tp) ⊗ ρ̂

pred
f (tp)Û †(τ), (9)

where ρ̂
pred
af (tm) is the coupled density operator for the atom-field system at the measure-

ment time, ρ̂
pred
a (tp) and ρ̂

pred
f (tp) are the uncoupled atom and field density operators at

the preparation time. Û(τ) is the evolution operator for the coupled system, given by eq.(3)

with Hamiltonian given by eq. (8). If the field is unmeasured the atomic state is simply

found by tracing over field states and vice versa,

ρ̂
pred
a (tm) = Trf

[

Û(τ)ρ̂
pred
a (tp) ⊗ ρ̂

pred
f (tp)Û †(τ)

]

, (10)

ρ̂
pred
f (tm) = Tra

[

Û(τ)ρ̂
pred
a (tp) ⊗ ρ̂

pred
f (tp)Û †(τ)

]

. (11)

Alternatively, we can condition the field by measuring the atom, or the atom by measuring

the field. This is done using the POM element corresponding to the measurement outcome.

Thus the conditioned atomic and field states immediately after the measurement are

ρ̂
pred
a (tm) ∝ Trf

[

Π̂fÛ(τ)ρ̂a(tp) ⊗ ρ̂f(tp)Û †(τ)
]

, (12)

ρ̂
pred
f (tm) ∝ Tra

[

Π̂aÛ(τ)ρ̂a(tp) ⊗ ρ̂f(tp)Û †(τ)
]

, (13)

where Π̂a(f) is the POM element corresponding to the outcome of the measurement per-

formed on the atom (field).

The retrodictive picture differs from above in that the state of the system is assigned on

the basis of the measurement outcome. Thus if the measurement POM elements for the atom

and the field are Π̂a(tm) and Π̂f(tm), the coupled initial density operator corresponding to

equation (9) is

ρ̂retr
af (tp) = Û †(τ)ρ̂retr

a (tm) ⊗ ρ̂retr
f (tm)Û(τ)

∝ Û †(τ)Π̂a(tm) ⊗ Π̂f(tm)Û(τ). (14)

The atom or the field will in general have been prepared in one of a set of initial states, and

this state conditions the coupled density operator similarly to equations (12) and (13), to

give retrodictive density operators for the atom and field respectively
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ρ̂retr
a (tp) ∝ Trf

[

ρ̂
pred
f (tp)Û †(τ)Π̂a(tm) ⊗ Π̂f(tm)Û(τ)

]

, (15)

ρ̂retr
f (tp) ∝ Tra

[

ρ̂
pred
a (tp)Û †(τ)Π̂a(tm) ⊗ Π̂f(tm)Û(τ)

]

, (16)

where the constant of proportionality is determined by normalisation. If there is no informa-

tion at all about the preparation of the initial states then ρ̂
pred
a (tp) and ρ̂

pred
f (tp) become

proportional to the unit operators for the atom and the field.

IV. RETRODICTION OF THE ATOMIC STATE: COLLAPSES AND PREVIVALS

Here we consider a particular situation in which retrodiction is a useful tool for finding

atomic states at an earlier time. We assume that the initial atomic state is completely

unknown, but the initial field is in a known coherent state. A measurement is made of

the atomic state, and this result is used as a basis for retrodicting the atomic state at

the preparation time. The retrodictive atomic density operator is given by equation (15).

For ease of calculation we assume that the atomic state is measured to be in one of a

pair of orthogonal states which span the two-level atomic basis, for example, the excited

or ground state. We can calculate quantities based on other assumed bases using results

for this one. The associated atomic POM element has unit trace and so the retrodictive

atomic density operator immediately prior to measurement is simply the measurement POM

element itself. Initially the field is in a coherent state, but the final state is unmeasured

so the field measurement POM element is simply the unit operator for the field [12]. Thus

equation (15) gives the initial retrodictive atomic density operator as

ρ̂retr
a (tp) ∝ 〈α|Û †(τ)Π̂a(tm) ⊗ 1̂fÛ(τ)|α〉, (17)

where |α〉 is the coherent field state and 1̂f is the unit state. It is relatively straightforward

to compute the density matrix elements,

〈l|ρ̂retr
a (tp)|m〉 ∝ 〈α|〈l|〈Û †(τ)Π̂a(tm) ⊗ 1̂fÛ(τ)|m〉|α〉, (18)

where l or m can be either the ground or excited states, or one of any other pair of orthogonal

states which span the two-level atomic basis. In fact Û(τ)|m〉|α〉 is simply the state that the
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atomic state |m〉 would have evolved into after a time τ in the predictive formalism. This

allows us to use the well-known solution to the Jaynes-Cummings model [11],

Û(τ)|j〉|α〉 =
∞
∑

n=0

[cg,n(τ)|g〉|n〉 + ce,n(τ)|e〉|n〉] , (19)

where the states |n〉 are the photon number states and the ground and excited state ampli-

tudes depend upon the coherent state expansion coefficients in the number state basis. The

amplitudes are found to be

cg,n(τ) = cg,n(0)

[

cos
Ω(n)τ

2
+

i∆

Ω(n)
sin

Ω(n)τ

2

]

+ ce,n−1(0)
2λn1/2

Ω(n)
sin

Ω(n)τ

2
, (20)

ce,n−1(τ) = ce,n−1(0)

[

cos
Ω(n)τ

2
− i∆

Ω(n)
sin

Ω(n)τ

2

]

− cg,n(0)
2λn1/2

Ω(n)
sin

Ω(n)τ

2
, (21)

where Ω(n) = (∆2 + 4λ2n)1/2 is the Rabi frequency, and cg,n(0) and ce,n(0) are the initial

amplitudes, given by

cg,n(0) = ancg(0) (22)

ce,n(0) = ance(0). (23)

These initial values are proportional to the number state expansion coefficients of the co-

herent state,

an = exp (−|α|2/2)
αn

√
n

. (24)

We can use these formulae to calculate retrodictive matrix elements and probabilities, given

that the atom was measured to be in a particular state. The calculations are relatively

straightforward, and details are omitted.

We consider the case where the atom is known to have been prepared either in the excited

state or the ground state with equal a priori probabilities. The appropriate preparation

device operators in (4) are |e〉〈e|/2 and |g〉〈g|/2. Figure 1 shows a typical plot of the
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retrodictive conditional probability, in this case the probability that the atom was prepared

in the ground state given that it was measured in the excited state. It shows retrodictive

Rabi oscillations which collapse as the elapsed time before the measurement increases. If

the preparation time was long enough before the measurement time the oscillations are seen

to revive, just as in the predictive case. The characteristic revival time is the same as the

predictive one. Thus “previvals” or “earlier revivals” in the preparation probability do exist.

Given that both the collapse time and the revival time are identical for the predictive

and retrodictive evolutions one might think that the retrodictive evolution is simply the

time-reverse of the predictive evolution. This is not the case, as is shown in figure 2,

which depicts the evolution for a weaker coherent state. Here we compare predictive and

retrodictive evolutions. Figure 2(a) shows the retrodictive conditional probability that the

ground state was prepared given that the atom has been measured in the excited state.

This can be compared with figures 2(b) and 2(c). These show, respectively, the predictive

conditional probabilities that (b) the atom is measured in its ground state given that the

excited state was prepared, and (c) the atom is measured in its excited state given that the

ground state was prepared. The retrodictive evolution is clearly the time-reverse of neither

of these two predictive evolutions .

This point can be illustrated more dramatically by considering other measured states. For

example, for a high-amplitude coherent state, after (predictive) Rabi oscillations collapse,

at a time τ = π/(2Ω(n)) the state of the system approximately factorises into uncoupled

atomic and field states [9]. No matter what the initial prepared atomic state, after this

period, which is half the revival time, the atom is prepared by the system in the state

|−〉 =
1√
2

(

|g〉 − eiφ|e〉
)

, (25)

where φ is the phase of the coherent state amplitude α [13]. The predictive evolution of the

state then consists of the revival of the Rabi oscillations.

On the other hand, if we measure the atom in this superposition state and try to retrodict

the prepared state, the evolution is completely different. This is illustrated by figure 3,
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which is a plot of the excited state preparation probability. For a short delay there are Rabi

oscillations which collapse, leaving a slow oscillation whose period is associated with the

revival time of the system. If the delay is equal to half the revival time then the excited

state probability passes through the value 1/2. The atomic density operator becomes

ρ̂retr
(

π

2Ω(n)

)

=
1

2
[|e〉〈e| + |g〉〈g|] , (26)

the no-information state. We say that the atomic state is unretrodictable at this time. The

reason for this is simply that our measurement of the atom only provides information about

the field at this time.

V. CONCLUSIONS

In this paper we have analysed the two-level atom interacting with a single-mode elec-

tromagnetic field in a coherent state from a retrodictive point of view. This system shows

predictive collapses and revivals in the atomic state probabilities [8]. We have demonstrated

the existence of retrodictive collapses and previvals of the Rabi oscillations in the atomic

state probabilities. This follows on from our previous work which demonstrated the existence

of retrodictive Rabi oscillations [4].

We have shown that the retrodictive and predictive evolutions are different. The differ-

ences are most marked when either of two particular criteria are satisfied. Firstly, when the

mean number of photons is low, for all measured atomic states, it becomes easy to differ-

entiate between the predictive and retrodictive evolutions. Secondly, for high mean photon

number, if the measured state is that to which all prepared states decay after a particular

time then the retrodictive evolution takes on a strange character. There is a low-frequency

retrodictive oscillation in the atomic state probability with a period equal to twice the re-

vival time. Furthermore, when the time between preparation and measurement is equal to

half the revival time the retrodictive state is unretrodictable. The probability that any one

of a pair of states which span the atomic space was prepared will then be one half.
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FIGURE CAPTIONS

Figure 1: A plot of the retrodictive conditional probability that the atom was prepared

in the ground state given a later measurement in the excited state as a function of the nor-

malised difference between preparation and measurement times λτ . Parameters: detuning

∆ = 0 and coherent state amplitude α = 5.

Figure 2: (a) Same plot as figure 1, but with coherent state amplitude α = 1.4. (b)

A plot of the predictive conditional probability that the atom was measured in the ground

state given that it was prepared in the excited state as a function of λτ . Parameters are

as for (a). (c) A plot of the predictive conditional probability that the atom was measured

in the excited state given that it was prepared in the ground state as a function of λτ .

Parameters are as for (a).

Figure 3: A plot of the retrodictive conditional probability that the atom was prepared

in the excited state given a later measurement in the superposition state 1√
2

(

|g〉 − eiφ|e〉
)

as a function of τ . The parameters are as in figure 1.

15



P  (g|e)
retr

λτ
0.00

0.25

0.50

0.75

1.00

40 30 20 10 0



P  (g|e)
retr

λτ
0.00

0.25

0.50

0.75

40 30 20 10 0



P  (g|e)
pred

λτ
0.00

0.25

0.50

0.75

0 10 20 30 40



P  (e|g)
pred

λτ
0.00

0.25

0.50

0.75

0 10 20 30 40



P  (e|-)
retr

λτ
0.00

0.25

0.50

0.75

40 30 20 10 0




