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Abstract. Previous research into three-dimensional numerical simulation of self-similar mixing due
to Rayleigh-Taylor instability is summarized. A range of numerical approaches has been used: direct
numerical simulation, implicit large eddy simulation and large eddy simulation with an explicit
model for sub-grid-scale dissipation. However, few papers have made direct comparisons between
the various approaches. The main purpose of the current paper is to give comparisons of direct nu-
merical simulations and implicit large eddy simulations using the same computational framework.
Results are shown for four test cases: (i) single-mode Rayleigh-Taylor instability, (ii) self-similar
Rayleigh-Taylor mixing, (iii) three-layer mixing and (iv) a tilted-rig Rayleigh-Taylor experiment. It
is found that both approaches give similar results for the high-Reynolds number behavior. Direct
numerical simulation is needed to assess the influence of finite Reynolds number.

1. Introduction
Rayleigh-Taylor (RT) instability plays an important role in many areas of research. It can degrade
the performance of inertial confinement fusion capsules, see for example Amendt et al (2002). It
also occurs in many astrophysical flows, see for example Fryxell et al (1991). The simplest case
consists of fluid with density 1 resting initially above fluid with density 2 < 1 in a gravitational
field g. Experiments using incompressible fluids with low viscosity, low surface tension and ran-
dom initial perturbations have shown that the dominant length scale increases as mixing evolves.
If mixing is self-similar then dimensional reasoning suggests that the length scale should be pro-
portional to gt2. The experiments indicate that the depth to which the mixing zone penetrates the
denser fluid , generally known as the bubble distance, is given by:
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where  varies slightly with Atwood number, A, and is typically in the range 0.04 to 0.08. The
distance to which the mixing zone penetrates the lighter fluid is referred to as the spike distance,

sh . The ratio s bh / h is a slowly increasing function of the density ratio 1 2 / . Three-dimensional

numerical simulation of this self-similar turbulent mixing problem, and some more complex ex-
tensions of the simple case, is the subject of the present paper.

Some experimental data is available. However, there are few detailed measurements at high-At-
wood number ( A > ½ ). Much of the understanding of the mixing process has been obtained from
3D numerical simulations. Direct numerical simulation (DNS) is feasible at moderate Reynolds
number and is essential for assessing the influence of Reynolds number (Re) and Schmidt number
(Sc). However, many of the experiments and applications are in the high-Re regime. It is argued
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here that high-resolution large eddy simulation is the most computationally efficient way of cal-
culating the high-Re behavior and that this approximation is needed for the more complex situa-
tions in which RT mixing occurs. As the problems of interest have an initial discontinuities, ILES
(implicit large eddy simulation) is strongly favored. However, a few researchers have used LES
(large eddy simulation) with explicit models for the dissipative processes. Mixing of miscible flu-
ids is considered here and for ILES or LES to be valid the Reynolds number is assumed to be
high enough for the flow to be beyond the “mixing transition” where, according to the hypothesis
of Dimotakis (2000), the Schmidt number does not affect the amount of molecular mixing.

Section 2 reviews previous research on 3D numerical simulation of RT mixing, both DNS, ILES
and LES. The emphasis is on the simple incompressible situation (1). The choice of numerical
technique is a matter of considerable controversy. However, very few papers have made direct
comparisons between the various approaches. The main purpose of the current paper is to give
some direct comparisons of DNS and ILES results using the same computational framework. The
emphasis is on quantities which are of most importance in practical applications, such as ICF: the
extent to which to which the fluids mix and the degree to which mixing occurs at a molecular
level. Section 3 summarizes the numerical method used here for both DNS and ILES. Results for
four test cases: (i) single-mode RT instability, (ii) self-similar RT mixing, (iii) three-layer mixing
and (iv) a tilted-rig RT experiment are given section 4. Concluding remarks are given in section
5.

The present paper focuses on 3D numerical simulation of RT mixing, which has been feasible
since the 1990s. Other aspects of research into RT instability have been reviewed by various au-
thors. For example, Sharp (1984) gives a review of the early research into Rayleigh-Taylor insta-
bility. Kull (1991) , Abarzhi (2010), Abarzhi and Rosner (2010) give reviews of theoretical mod-
elling approaches. Low Atwood number experiments, for which detailed diagnostics are feasible,
are reviewed by Andrews and Dalziel (2010). Wide-ranging reviews of many aspects of the insta-
bility processes are given in the theme issue of the Philosophical Transactions of the Royal Soci-
ety edited by Sreenivasan, Gauthier and Abarzi (2013).

Much of the content shown here was presented at the “Turbulent Mixing and Beyond” workshop
held in 2014. The paper addresses key themes and topics of the TMB program, in particular non-
equilibrium turbulent processes, Rayleigh-Taylor instabilities and interfacial mixing.

2. Summary of previous work on numerical simulation of Rayleigh-Taylor mixing
A gt2 scaling law for the evolution of RT instability from random perturbations was proposed in a
number of early publications , Birkhoff (1954), Sharp and Wheeler (1961), Belen’kii and Fradkin
(1965) and Anuchina et al (1978). However, the form of the scaling law, given by equation (1)
was established by the experiments of Read (1984) and Youngs (1989) which indicated ~0.06.
Later experiments of Dimonte & Schneider (1996, 2004), gave ~0.05 and also considered cases
where g varied with time. However, when high-resolution 3D simulation became feasible, calcu-
lations with “ideal initial conditions” (small random short wavelength random perturbations) indi-
cated very low values of ~0.03, Youngs (1994), Linden et al. (1994). In the latter paper, a sim-
ple model was used to show that if the value of  for ideal initial conditions is so low, then mix-
ing would be significantly enhanced by very low levels of long wavelength initial perturbations.
The low values of  for ideal initial conditions were supported by Dimonte et al (2004) in which
results for seven different ILES techniques (including the TURMOIL method described in section
3) were given. The mesh size used was 512256 256 and all simulations indicated similar low
values, =0.025 0.003. There was a high degree of consistency between the different methods
used, for both the overall growth rate and the internal structure of the mixing zone. These results
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confirmed that the observed growth rates are likely to be influenced by initial conditions. By use
of a simple model, Dimonte (2004) argued that  should have a weak (logarithmic) dependence
on initial perturbation amplitudes. This explains why  does not vary greatly within a series of
experiments using the same apparatus.

Cook and Dimotakis (2001), Cook and Zhou (2002) and Young et al (2001) performed the first
DNS for RT mixing and gave results for the early stages of the mixing process and the detailed
structure of the mixing zone. Cook et al (2004) used LES with 11523 meshes and an explicit dis-
sipation model. Both of these approaches showed the development of a “mixing transition”, as
defined by Dimotakis (2000), when an inertial range begins to form. The LES gave ~0.027, very
similar to the ILES results of Dimonte et al. (2004). Ristocelli and Clark (2004) used DNS to un-
derstand the time variation of  in the early stages of the mixing process. Subsequently very high
resolution DNS results, using 30723 meshes, were given by Cabot and Cook (2006). This paper
showed that  was high early in the simulation and the dropped to a low value after the mixing
transition. The value of  then slowly increased to ~0.025 by the end of the simulation, when

/ 
b bRe h h , reached 3104, close to the values obtained from the previous ILES/LES. The At-

wood number used in these papers did not exceed A=0.5. A form of LES was also used by Burton
(2011) to perform simulations at high Atwood number, A=0.5 to 0.96. In all cases, a low value of
~0.02 was obtained. The spike to bubble ratio, /s bh h , was estimated and found to be signifi-

cantly less at high Atwood number than reported for the immiscible-fluid experiments of
Dimonte and Schnieder (2000). The review paper, Statsenko et al (2013), shows results for the
total mixing zone width at density ratios 3:1 to 40:1. The results at 3:1, assuming ~s bh h , indi-

cate ~0.03. High resolution (up to 4032x40962) DNS results for RT mixing at a range of At-
wood numbers , A=0.04 to 0.9 have given by Livescu et al (2010,2011) and a review of DNS ap-
proaches is given by Livescu (2013). All the calculations referred to so far (DNS, ILES, LES)
have indicated low values of  ~0.02 – 0.03 for mixing of miscible fluids arising from ideal ini-
tial conditions.

It appears that  only has a unique value, corresponding to loss of memory of the initial condi-
tions, if small random short wavelength perturbations are assumed. The best estimate is then 
~0.025 with little dependence on Atwood number. However, some doubt still remains. Cabot and
Cook (2006) have speculated that there might be a difference in the behavior at ultra-high Reyn-
olds number, beyond present computational capabilities.

Several researchers have tried to improve agreement between simulations and experiments by
taking the initial conditions into account. In Dalziel et al (1999) measurements of the perturba-
tions generated when the barrier separating the two initial fluids was withdrawn were used to give
a more realistic ILES model of the experiments. Ramaprabhu and Andrews (2004) used measure-
ments of initial perturbations for channel flow RT experiments to initialize an ILES model. This
enabled the observed value of  ~ 0.07 to be matched. Mueschke and Schilling (2009a and b)
used a DNS model for the same experiments to obtain detailed mixing statistics and further analy-
sis of the DNS data was given in Schilling and Mueschke (2010). Ramapraphu et al (2005) and
Banerjee and Andrews (2009) used an incompressible ILES technique to show that RT mixing
has a strong dependence on initial conditions. In particular, it was found that if long wavelength
initial perturbations were used with a k-3 power spectrum (k = wavenumber), values of  up to
0.08 could be achieved. Many of the experiments have used immiscible fluids whereas the simu-
lations assume miscible mixing. It is possible that measured values of  have been influenced by
surface tension. It could be argued that low values of surface tension suppress fine-scale mixing
and thereby increase  by increasing the effective Atwood number. Glimm et al (2001) advocated
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the use of front-tracking simulations in such cases and expressed concern about the treatment of
molecular mixing in the ILES approach. The paper by Glimm et al (2013) uses front tracking and
LES to model a range of experiments, many of which have used immiscible liquids. Initial condi-
tions were estimated, from the early-time experimental photographs in some cases, and good
agreement was obtained with the observed growth rates which had values of  in the range 0.05
to 0.08. For turbulent mixing experiments with random initial perturbations, initial conditions are
never known precisely. However, it is clear that several authors have achieved improved agree-
ment with experiment by estimating the initial conditions as accurately as possible.

Since Youngs (1994), TURMOIL ILES have been performed with increasing mesh resolution. In
Youngs(2003) the mesh resolution was increased to 720 x 480 x 480. For random short wave-
length initial perturbations the value of  was 0.027, in agreement with the earlier simulations.
Inogamov (1978) pointed out that self-similar mixing at an enhanced rate could be obtained if
random long wavelength perturbations with amplitude  wavelength, which corresponds to a k-3

power spectrum. It was found that if such a perturbation spectrum was used with a very small am-
plitude standard deviation of only 0.00025  the computational domain width, then  was in-
creased to about 0.06, a typical experimental value. Similar results using increased resolution
were given in Youngs (2009). In Youngs (2013) ILES results were shown for mesh resolutions
~2000 x 1000 x 1000. The increase in mesh resolution had little effect on the low value of  ob-
tained when short wave length initial perturbations are used. A range of calculations was carried
at different density ratios and with different levels of the k-3 – spectrum perturbations, giving a
range of values of ~0.025 to 0.1. Properties of the mixing zone were derived as functions of .

In this section emphasis has been given to the values of  calculated by various researchers and to
the agreement with experiment. An important conclusion is that there is a large difference be-
tween the mixing rates for simulations using ideal conditions and those observed experimentally.
The papers referred to here have also given many results for the detailed structure of the mixing
zone. There has been some experimental validation of this. However, as regards the detailed
structure, simulations have provided much more information than can be obtained experimen-
tally.

Several papers have considered simple extensions to the self-similar mixing case (1). ILES results
for a three-fluid mixing problem were given Youngs (2009) and further results for this case are
shown here in section 4. In Andrews et al (2014) the initial interface was tilted relative to the di-
rection of gravity; DNS, incompressible and compressible ILES results were given. In section 5
here further comparisons of DNS and ILES are shown for this case. RT mixing in a tall tube was
considered by Lawrie and Dalziel (2011) and ILES was compared with a simple model which

predicted 2 / 5~bh t . Williams (2017) has used ILES (TURMOIL) for RT mixing with non-uni-

form stratification in each fluid. Variable acceleration, with g alternating in sign was investigated
by incompressible ILES, Dimonte et al (2007) and Ramaprabhu et al (2013). Alternating sign ac-
celeration and evolution of RT mixing with an additional localized perturbation was considered in
Statsenko et al (2013). In the paper by Olson et al (2011) initial shear is added to investigate the
combined effect of Rayleigh-Taylor and Kelvin-Helmholtz instabilities. This paper also compares
results for DNS and LES with an explicit dissipation model. It is shown that the LES results con-
verge to the DNS result at high resolution.

The choice of the most suitable numerical methods for 3D simulation of Rayleigh-Taylor and
Richtmyer-Meshkov (RM) mixing remains an area of significant uncertainty. High-order or spec-
tral methods are often favored for DNS, in particular for the accurate calculation of fine-scale
properties, and have been used in previous the RT DNS of Cabot and Cook (2006) and Livescu
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(2013). Use of a simple approach is considered here, a 2nd /3rd order Lagrange-remap method
(TURMOIL). It is argued that this method is suitable for relatively complex problems with initial
density discontinuities and shocks. Rehagen et al (2017) gives a comparison of a similar La-
grange-remap technique with the high-order method of Cabot and Cook (2006), for RT mixing at
moderate mesh resolution. Agreement between the two numerical techniques was found for
global quantities such as mixing zone widths and the degree of molecular mixing. In these simu-
lations the dissipative scales were well resolved at the start of the calculation (near DNS) but at
the end the simulations were effectively LES. A more advanced LES approach, the stretched-vor-
tex subgrid-scale model, has been applied to RM mixing, Lombardini et al (2011), but has not
been used for the RT mixing problems considered here. A wide range of numerical techniques is
available. However, the most appropriate choices for simulating the variety of RT and RM mix-
ing cases is very complex problem and additional studies are required to resolve this challenging
issue.

3. Summary of the numerical method used
The results shown here have been obtained by using the TURMOIL Lagrange-remap hydrocode
which calculates the mixing of compressible fluids. This was initial used for ILES of RT mixing,
Youngs (1991) and solved the Euler equations plus advection equations for fluid mass fractions.
More details of the Lagrange-remap method, its application to RT and RM mixing and further
discussion of ILES techniques are given by Grinstein et al (2007). The remap phase uses the mon-
otonic advection method of van Leer (1977) to prevent spurious oscillations. In turbulent flows, the
monotonicity constraints provide the required dissipation at high-wavenumbers and this is the basis
of the ILES approach. Perfect gas equations of state are used for each fluid species with constant
values of the specific heat ratio, r , and specific heat , vrc . The mixture is assumed to be in pressure

and temperature equilibrium. The pressure of the mixture is then given by

 1 with /r vr r vr r
r r

p e c m c m      

For DNS the Navier-Stokes equations are used and include the effects of viscosity (kinematic
viscosity), species diffusion and heat conduction. Simplified material properties are used. The same

diffusivity, D, is used for all fluid species and for heat (i.e. the conductivity coefficient is  pc D ).

This leads to a simplified form of the equations , previously used by Kokkinakis et al (2015), for

density,  , velocity, iu , mass fractions, rm and specific internal energy, e :-
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For ILES the Euler equations are used;  and D are set to zero. For the calculations shown here, the
adiabatic constants are 1 2 5/ 3   and the specific heats are chosen to give temperature equilib-

rium initially at the unstable interface: 1 v1 2 v2c c  (specific heats are only needed for the calcu-

lation of volume fractions –see below). Heat conduction does not have a significant effect. For
DNS the Schmidt number is unity, i.e.  = D, as in many previous RT DNS. The initial interface
pressure is set to a sufficiently high value to give a peak Mach number less than 0.2 and this gives
near incompressible flow for which mean volume fraction distributions are unaltered by increase
in pressure. Hence the results shown are representative of incompressible gaseous mixing.

In the numerical method, the Lagrange and remap phases are unchanged for DNS. In particular,
monotonic advection is retained in the remap phase. Extra steps in the calculation are included for
viscosity and diffusion of mass fractions and enthalpy. For accurate DNS, the viscous and diffusive
scales need to be well enough resolved for dissipation in the remap phase to be negligible.

A convenient way of quantifying the extent to which species r mixes with the other fluids is by use
of the mixed mass, Zhou et al (2016)

  21r r r r rm m dV M m dV     M (3)

Mr denotes the total mass of fluid r which remains constant. Hence the production of Mr corresponds

to the dissipation of 2
rm .

The amount of mixing which occurs in the diffusion steps (the resolved mixing) can be calculated
from
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r 2 r r
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For accurate DNS, res
r rM M . However, as some mixing will occur in the remap steps, res
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. A measure of the accuracy of the DNS is given by the ratio
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r r
r

r


 

M M

M
(4)

An alternative approach would be to use a non-dissipative remap phase. The resolution would need
to be sufficient to make any deleterious effects due to spurious oscillations negligible and it is
thought that this would be difficult to quantify. The advantages of the approach chosen here is that
a robust computational method is retained and a method of checking the accuracy of the DNS is
available. A similar check on viscous dissipation is also made; for accurate DNS, the loss of kinetic
energy in the remap phase should be small compared to the dissipation directly due to viscosity.

For quantifying the amount of mixing that takes place, it is useful to construct fluid volume frac-
tions
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Many previous researchers e.g. Youngs (1994), Andrews et al (2014), have used fluid volume frac-
tions to define local (r) and global ( r) molecular mixing parameters
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In general, the overbar denotes the ensemble average. For the cases shown here the ensemble av-
erage is approximated by using plane averaging (sub-sections 4.2 and 4.3) or line averaging (sub-
section 4.4). If only two fluids are present, 1 2 1 2and .       The values of the molec-

ular mixing parameters vary from 0 (no molecular mixing) to 1 (fully mixed at a molecular level).

As explained by Youngs (2007) the spatial variation of the dissipation in TURMOIL ILES can be
accurately quantified. The Lagrange phase is non-dissipative in the absence of shocks as in the test
cases considered here. The remap phase is split into separate steps for x, y and z advection. Consider
the x-remap of a quantity per unit mass. The equations solved are
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Hence in the absence of numerical dissipation 2dV should be conserved in the remap step.

However, if monotonic advection is used for  , dissipation of this quantity will occur. The spatial
distribution of the dissipation can be derived as follows. Suppose the difference equations for con-
servation of mass and are written as
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These difference equations are used to calculate the reduction in 2dV . The summation is re-

arranged to give
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The contribution to the dissipation, 1 1
2 2

j j
M

 
 , is then divided between meshes and 1j j  . If 

is set to each of the velocity components in turn, this technique gives the spatial distribution of the
dissipation of kinetic energy in the remap phase. For the ILES this gives the “sub-grid-scale” energy
dissipation. Further details are given in Youngs (2007). This idea was first used by DeBar (1974)
to calculate kinetic energy loss, but not in the context of turbulence simulation. If  is set to mr ,
the dissipation calculated corresponds to the production of Mr (3).

The TURMOIL method used second-order accurate numerics in the Lagrange phase and third-
order monotonic advection in the remap phase. Second-order, central differencing is used for the
viscous and diffusion terms. As noted in section 2, high order methods have, as a rule, been used
in previous DNS studies of RT mixing. Comparisons between TURMOIL and higher order meth-
ods, typically of order 5, for a simple viscid vortical flow are given in Shanmuganathan et al (2014)
and Tsoutsanis et al (2015). TURMOIL compares very favorably with the higher order methods. It
does require a finer mesh (by a factor ~1.5 ) to obtain converged results but is computationally
much faster. Hence it is considered a feasible approach for DNS.

4. Applications

4.1 Single Mode Rayleigh-Taylor instability

The first application is single mode Rayleigh-Taylor instability at density ratio 1 2/ 20   and

with Ag=1. The width of the domain, set to unity here, is twice the perturbation wavelength,  ,
and the kinematic viscosity (the same for each fluid) is chosen so that the most unstable wave-
length (if diffusivity is neglected) is

1/ 32
1

m 2
4

v

Ag
  

 
  

 
(8)

Diffusivity, with D  , also reduces the growth rate of short wavelength perturbations. How-

ever, the parameter m is nevertheless considered to be a useful estimate of the viscous/diffusive

scale. The Mach number of the simulations is sufficiently low to give near-incompressible flow.
There is initially a sharp interface but this quickly becomes diffuse. Numerical results are shown
in figure 1.

(a) (b) (c) (d)

Figure 1: (a) 64x96 meshes, t=2.0, =D=0; (b) 32x48 meshes, t=2.5, =0.07;
(c) 64x96 meshes, t=2.5, =0.024; (d) 128x192 meshes, t=2.5, =0.008.
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Volume fraction contours ( 1 0.1,0.3,0.7,0.9f  ) for three different mesh sizes are compared at

t=2.5. Figure 1(a) shows results at an earlier time with viscosity and diffusivity omitted. This
clearly shows that viscosity and diffusivity have a large effect. The effect of viscosity and diffu-
sivity is accurately calculated with 32 the mesh size,m x    , figure 1 (d). However, a good ap-

proximation is obtained with 8m x   , figure 1 (b). In that case as defined by (4) is 0.07 and

this implies that some of the mixing occurs in the remap phase. It is concluded that the influence
of diffusivity on the amount of mixing is adequately calculated with less than fully resolved DNS.

4.2 Self-similar mixing at a plane boundary
One of the ILES calculations described in Youngs (2013) is repeated with viscosity and diffusiv-

ity included. For the case chosen, high-density fluid, 1 20  , occupies the region x < 0 and the

low density fluid, 2 1  , occupies the region x > 0. Gravity acts the x-direction and is chosen to

give Ag=1. Within each initial fluid, hydrostatic equilibrium with an adiabatic variation is used.
Short wavelength random perturbations are used with wavelengths in the range 4x to 8x. The
resolution used for the DNS is same as that used for the ILES, 1550x1000x1000 meshes. The
width of the domain in the y and z directions is unity. For viscosity and diffusivity

a constantD   and the value of the constant is chosen so that the viscous scale, (8), is

17meshesm  . Then, according to the results of the previous sub-section, the early time effect of

viscosity and diffusivity should be well resolved. However, the dissipation scales also need to be
resolved at later times when turbulence develops. For homogeneous turbulence dissipation occurs

at the Kolmogorov scale, K , which is related to , the kinetic energy dissipation rate per unit

mass by

1/ 43

K





 
  
 

For RT mixing, experiments and simulations, Dalziel et al (1999), Cabot and Cook (2006) show
high wavenumber spectra similar to k-5/3. Hence a similar scaling law for the dissipation scales (at
least at Sc~1) is expected. For self-similar RT mixing, is proportional to potential energy loss

rate per unit mass, ~ bAgh and this implies that the dissipation scales should decrease slowly with

time, 1/8~K bh . Hence the need to resolve the turbulent dissipation scales will eventually deter-

mine the mesh resolution required.

The ILES and DNS give very similar values of ~0.030. Viscosity and diffusivity reduce the
growth rate of the short wavelength initial perturbations used here. This leads to a small time de-
lay in the DNS. Hence DNS results at t=3.2 are compared with ILES results at t=3.0 when the
mixing zone widths are similar. Plane sections for volume fraction distributions are shown in fig-
ure 2. It is apparent that much more fine scale structure is present in the ILES. It should be noted
that different random numbers were used in each simulation. Hence the large scale structures do
not appear in the same locations.
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(a) (b)

Figure 2: Volume fraction distributions for plane sections, denser fluid at top; (a) ILES at t=3.0,
(b) DNS at t=3.2.

The main purpose of this section is to compare results for the amount of molecular mixing, as de-
fined by the parameters  (5) and  (6). Figures 3 and 4 compare the ILES and DNS results.

Figure 3: Profiles of dense fluid volume fraction (solid lines) and molecular mixing parameter
(dotted lines)

Figure 3 shows values of 1 andf  plotted against the scaled distance variable /x W where

 1 11W f f dx  is an integral measure of the mixing zone width. It is evident that DNS and

ILES give very similar results. The two ILES results shows that there are small differences in re-
sults due to the choice of random numbers for the initial perturbations.


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Figure 4: Global mixing parameter, , versus mixing zone with.

Figure 4 shows that at the end of the simulations, the global mixing parameter reaches very simi-
lar values, ~ 0.75 0.8  , for DNS and ILES. However, the early time behavior is different, At
the start of the DNS, is close to unity when the initially sharp interface diffuses away and then
drops to a lower value as the instability evolves. Finally, as small scale structure develops, rises
to a limiting value of about 0.8. This is, of course the physically correct behavior for the chosen
values of  and D. Figure 4 also shows a plot of the quantity , as defined by equation (4). This
never exceeds 5% and this indicates that the DNS is adequately resolved. For the ILES there is
initially a sharp dip in as the instability evolves without the development of fine scale structure.
Then, when sufficient fine scale structure (inertial range) can be resolved, rises to a limiting
value of 0.75 to 0.8. In this case, the early time behavior is determined by the numerics; the ILES
results for the degree of molecular mixing are only meaningful when the late-time limiting value
is approached. This occurs when W~0.02. The width of the mixing zone, ~8W according to figure
3, is then equal to 160 times the mesh size. For the DNS higher resolution is needed to reach the
limiting value of The dynamic range is not very high in the DNS shown here but should be
sufficient to estimate the limiting value of  s a limiting value has been reached, it is consid-
ered appropriate to describe the flow as “turbulent” by the end of the simulation. The dynamic
range is not high enough to calculate the high-Reynolds behavior of some of the fine-scale prop-
erties.


The molecular mixing parameter,  , varies from =0.6 on the bubble side to =0.95 on the spike
side for both DNS and ILES; this is in good agreement with the DNS results of Livescu et al

(2011). The spike/bubble ratio / 1.7s bh h  is also the same for both DNS and ILES and in agree-

ment with previous results, for example Burton (2011).

An appropriate estimate of the Reynolds number, based on the bubble distance and velocity, is

2
Re ~ 2500 at the end of the simulationb bb b

h Aghh h 

 
 


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The Reynolds number achieved is close to that in the RT experiments described by Mueschke et
al (2009) in which  reaches a plateau level for gaseous mixing at Sc~0.7. For water channel ex-
periments, Sc~1000, a significantly higher Reynolds number, probably of order 104 (not achieved
in the experiments) is needed to reach the plateau level. This high Sc case is beyond current DNS
capability.

The comparison of the DNS and ILES results leads to the following conclusions. The two ap-
proaches give very similar results for the late-time degree of molecular mixing, when a high
Reynolds number is achieved. This should dispel concerns about the ability of ILES to calculate
molecular mixing. If the high Reynolds number behavior of the global properties of the mixing
zone is the main point of interest then the ILES approach is able to estimate this with significantly
less computer resources than DNS. If the influence of finite Reynolds number is required then
DNS is, of course, essential. Moreover, DNS is required for many small scale properties of the
mixing zone.

4.3 Three-fluid mixing
In this sub-section a more complex RT mixing problem is considered: the break-up of a dense
fluid layer. In some ICF capsule designs, for example Amendt et al (2002), multiple shells are
used and this has provided the motivation for a three-layer test case. This is significantly more
difficult than the previous test case. For self-similar mixing at a plane boundary the main require-
ment is to reach the self-similar state before the end of the simulation. For the three-fluid case,
turbulent flow needs to established before the intermediate layer breaks up, and for DNS this has
proved difficult. It would be desirable to show DNS for significantly higher Re than has been
possible at present. Nevertheless, some interesting results for the influence of viscosity on the
break-up of the dense layer are given.

DNS results are given for one of the cases for which ILES results were given in Youngs(2009) .
The initial configuration, with x measured downwards in the direction of gravity has

1
12

1
22

3

Fluid 1: 0 density

Fluid 2: density

Fluid 3: 2 density

x H

H x H

H x H







 

 

 

A range of density ratios was considered in Youngs (2009). For the comparisons shown here

2 1 2 3/ / 3     is chosen. Gravity is chosen to give Ag=1 and H=1 here. Results are given as

a function of a scaled time /Ag H t  . Initial random long wavelength perturbation are added

at the lower unstable boundary with a power spectrum given by

3 1
2

/ 4 2 /
( )

0 otherwise

C k x k H
P k

     



The value of C was chosen so that the standard deviation of the initial perturbation was
0.00025H  . For ILES this gave approximate self-similar growth, before dense layer break-

up, with an enhanced value of ~ 0.06, a typical experimental value.

The mesh used for ILES was 1024x5122. According to Youngs (2009), this gave near-converged
results. For DNS, three mesh sizes were used: 512 x 2562, 1024 x 5122, 2028 x 10242. In each

case the values of D  were chosen to give 16m x   so that the resolution of the viscous and
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diffusive scales at early time was similar to that obtained in the last sub-section. A convenient es-
timate of the Reynolds number for the flow is

1
21

2
Re when = width of dense layer,b b

b

H AgHh h
h H



 
 



This gives Re ~ 500, 1400, 3400 for the three DNS mesh sizes. For the lowest value of Re~500

the calculation has been repeated using the intermediate mesh size, thus giving 32m x   , to

show the effect of mesh size at given Re.

Calculations are run to =10, when the amount of mixing is close to the final value. Figures 5 and
6 show volume fraction distributions for the ILES and the highest resolution DNS. It is evident
that the overall time scale for the mixing process is very similar for the two calculations. How-
ever, more fine-scale structure is present in the ILES, in spite of the lower resolution.

(a) =1 (b) =2.5 (c) =4 (d) =10
Figure 5: Dense fluid volume fraction (plane sections) for ILES, 1024x512x512 meshes
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(a) =1 (b) =2.5 (c) =4 (d) =10
Figure 6: Dense fluid volume fraction (plane sections) for DNS, 2048x1024x1024 meshes,
Re=3400

Figure 7: Mix width for dense fluid, W2, versus scaled time, .

Figure 7 shows the evolution of the integral mix width for the dense fluid layer,

 2 2 21W f f dx  . For the DNS at the two higher values of Re, 1400 and 3400, the mixing rate

is similar to the ILES. However, for the lowest value of Re=500 there is a significant difference
in behavior. Initially , <0.5, there is rapid mixing due to diffusion at the initially sharp interface.
Then as the instability evolves, ~2, the mixing rate is significantly higher than for the lowest val-
ues of viscosity. This is attributed to two factors. For this case mixing is, to a large extent, con-
trolled by the long wavelength initial perturbations which are not significantly affected by viscos-
ity. Fine scale structure is suppressed by viscosity and this leads to less molecular mixing (see
figure 10). The increased density contrast then tends to increase the mixing rate. Figure 7 also
confirms that the DNS results for Re=500 are insensitive to mesh size.
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Distributions of volume fractions averaged over (y,z) –planes are shown in figures 8 and 9. At
=4, the distributions for the highest Re DNS and the ILES are very similar. This is also true for
the final state at =10. It is interesting to note that for the final state, figure 9, the effect of Reyn-
olds number is surprisingly small.

Figure 8 : Plane averaged volume fraction distributions at scaled time =4,

dotted lines : 1f , solid lines : 2f , dashed lines : 3f .

Figure 9 : Plane averaged volume fraction distributions at scaled time =10,

dotted lines : 1f , solid lines : 2f , dashed lines : 3f .
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Figure 10: Global molecular mixing parameter,  versus scaled time, 

Figure 10 shows the evolution of  2 , the global mixing parameter for the dense fluid, as defined
by (6). The DNS results show that the Reynolds number has a significant effect. As for the two-
fluid mixing case (sub-section 4.2) the interface initially diffuses away and gives values of  2

close to unity. Then as mixing evolves  2 drops to a value of ~0.55 and finally rises as fine scale
structure develops. The minimum value changes little with Reynolds number but time at which
the minimum occurs increases as viscosity increases. For high Reynolds number self-similar mix-
ing,  2 should reach a plateau level, as implied by figure 4. For the range of Reynolds numbers
considered here this is not achieved before mixing reaches the top of the dense layer at ~ 3.
Hence DNS at considerable higher Reynolds number is needed to model the high-Reynolds num-
ber behaviour. For the ILES a plateau level of  2~0.68 is reached for =1 to 3 and this is typical
of experimental results for Sc~1, Mueschke et al (2009) , which indicate ~0.70.

For the DNS calculations shown in figure 10 values of 2 , as defined by (4), at =10 are as fol-
lows. For the calculations at Re=500, 2 =0.04 with 16m x   and 2 =0.007 with 32m x   .

Hence the calculation at the higher resolution is well resolved but it is evident from figures 7 and
10, that the calculation with 16m x   gives very similar results. For the higher Reynolds num-

ber simulations with 16m x   , 2 =0.06 for Re=1400 and 2 =0.065 for Re=3400 . The resolu-

tion of the DNS is not quite so good but should be adequate for the results given. For the DNS

shown here the resolution of the initial viscous scale is kept the same and this implies 2 / 3~x  .

The variation of 2 with Re suggests that in order to maintain the accuracy of the DNS at late

time, the resolution of the Kolmogorov scale should be kept the same and this implies 3/ 4~x  .
In order to model the high-Reynolds number behavior for this test case with DNS calculations at
much higher Re are desirable, a factor 10 higher perhaps. If the computational time step is deter-

mined by the Courant number, 3/ 4~x  scaling then implies an increase in computer time of a
factor 1000, which is impractical at present.
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The conclusions drawn from the DNS and ILES results for the three-fluid test case are as follows.
The overall progress of the mixing process, as indicated for the volume fraction distributions, is
very similar for the ILES and the highest resolution DNS. The ILES appears to give an adequate
approximation to the high-Re behavior. DNS is able to assess the influence of viscosity at moder-
ate Reynolds number and at Schmidt number Sc~1.

4.4 A tilted-rig Rayleigh-Taylor experiment
The final problem considered is the Tilted-Rig test case described by Andrews et al (2014). This
is based on an experiment described by Youngs (1989) for which a tank containing hexane (top,
g/cc) and NaI solution (bottom, =1.89g/cc) was accelerated downwards. The experi-
mental rig was inclined at an angle =546to the vertical. This tilted the initial interface relative
to the sides of the tank and led to a large scale overturning motion in addition to the growth of a
turbulent mixing zone. This flow is, on average, two-dimensional and the main purpose of the test
case is to provide a benchmark problem for 2D RANS (Reynolds-Averaged Navier-Stokes) mod-
els and was used for this purpose by Denissen et al (2014). It is a challenging test case for DNS;
the viscosity used both here and by Andrews et al (2014) needs to be increased by a factor 10 in
order to resolve the dissipation scales.

In the simulations, figure 11(a), the tank is static and a gravitational force is applied in the vertical

direction. The domain size used in the simulations is 15cm, 24cmx y zL L L   . Reflective

boundary conditions are used in the x and z directions. Periodic boundary conditions are used in
the y direction. The value of Ly is increased from the experimental value of 2.5cm in order to re-
duce fluctuations for y-averaged quantities.

(a) (b) (c) (d)
Figure 11: The Tilted-Rig experiment. (a) schematic, (b),(c),(d) sequence of experimental images

at times 45.3ms, 59.8ms, 71.1ms.

In the experiment the acceleration takes about 20ms to rise to a near-constant plateau level. The
incompressible ILES and DNS reported in Andrews et al. (2014) used the measured acceleration
history for gz(t). However, for the compressible TURMOIL simulations this was impractical and a
constant value of gz=0.035 cm/ms2 was used. A correction was made to the time scale for com-
parisons between the simulations. Results are given here for a scaled time of

2.117z

x

Ag
t

L
  
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which corresponds approximately to figure 11(d).

The DNS of Livescu, shown in Andrews et al. (2014) began with a slightly diffuse interface.
Moreover, as the simulations began with gz=0, the interface further diffused away before the in-
stability evolved. This led to a significant delay in the development of the instability. The TUR-
MOIL DNS results with constant gz and a sharp initial interface reduce this effect and it is argued
that this gives a more direct comparison of ILES with DNS.

The mesh sizes used for the TURMOIL simulation shown here are 600 x 600 x 960 (ILES) and
1600 x 1600 x 2560 (DNS). The value used for =D was, 1.57 x 10-4, the same as the lowest
value used by Livescu. Then for the DNS 15m x   and the resolution of the early stages is sim-

ilar to that in the previous sub-sections. As described in Andrews et al (2014), random initial per-
turbations have a k-2 power spectrum with wavelength range 0.2 to 7.5cm and standard deviation
0.0075cm . Calculations with the same initial perturbations but without the tilt give ~0.05, typi-
cal of the experimental values.

Two estimates of the Reynolds number for the DNS are give. Andrews et al. (2014) used a value

base on the maximum perturbation wavelength, max 7.5cm  :-

max
maxRe / 14000

1

Ag

A


  



The Reynolds number based on the bubble distance and velocity (measured in the center of tank)
at the time selected, t=2.117, is approximately

Re 2400b bh h


 



and this is similar to the value achieved for DNS shown in section 4.2

(a) ILES (b) DNS (c) ILES (d) DNS

Figure 12: (a,b) distributions of volume fraction (contours for 1 0.025,0.3,0.7,0.975f  ) and (c,d)

turbulence kinetic energy, k (range =0 to 0.05 cm2/ms2)

For this flow ensemble averages are functions of x and z and are approximated by averaging in
the y-direction. Figure 12 shows comparisons of volume fractions and turbulence kinetic energy.
As in Andrews et al (2014) the latter is define by



Numerical simulation of Rayleigh-Taylor mixing

Page 19 of 23

    2 22

where
x x y z z

x z
x z

u u u u u u u
k u , u

  

  
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 
 

The ILES and DNS give very similar distributions. The width of the mixing zone is slightly
greater in the DNS. As for the three-layer problem, this is attributed to reduced fine-scale mixing
in the early stages of the DNS which gives greater density contrast and increased buoyancy.

Figure 13 shows comparisons of the kinetic energy dissipation rate per unit mass, , and the mo-
lecular mixing parameter, . Again it is found that ILES and DNS give similar results. For the

DNS, /ij ijS e  , and for the ILES, is the implicit numerical dissipation calculated as de-

scribed in section 3. It is of particular interest to see how this compares with the viscous dissipa-
tion in the DNS. At the time shown, the quantity as defined by (3), is 0.07. Hence the DNS is
reasonably well resolved.

(a) ILES (b) DNS (c) ILES (d) DNS

Figure 13: Distributions of (a,b) kinetic energy dissipation,, plotting range 0 to 0.0025 cm2/ms3

and (c,d) molecular mixing parameter, , plotting range 0.3 to 0.95.

Figure 14: Global mixing parameter,  , versus scaled time, .
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The evolution of the global mixing parameter,  , is shown in figure 14. The trend is similar to
that shown in figures 4 and 10. For the DNS,  reaches values close to unity when the initial in-
terface diffuses away, then dips to ~0.5 and finally rises to ~0.7. From =1.75 onwards, when the
effect of finite Reynolds number is presumed small, values of  for ILES and DNS are near-iden-
tical. Figure 14 also indicates the expected behavior at very high Reynolds number; a high plat-
eau level of ~0.7 should quickly be reached and  should increase slightly towards the end of
the experiment. The ILES gives an approximation to this behavior at an earlier stage that the
DNS. The previous DNS of Livescu showed similar behavior. dipped to a value of ~ 0.47 and
the rose to values approaching the ILES results. However, because of the time delay (explained
earlier), the previous DNS did not reach the stage where the ILES and DNS results agreed.

The total computer time (processor – hours) for the DNS was a factor 50 greater than that for the
ILES. Hence ILES provides the simplest way of estimating the high-Reynolds number behavior.
As noted earlier, if the effect of finite Reynolds number is required, DNS is essential.

5. Concluding Remarks
Three dimensional simulation, DNS, ILES and some examples of LES with explicit dissipation
models, has made a major contribution to understanding the process of turbulent mixing by Ray-
leigh-Taylor instability. The detailed structure of the mixing zone is difficult to obtain from ex-
periments, especially at high Atwood number, and 3D simulation is able to fill this gap. However,
one important result is learnt from experiments. Typical experiments give ~0.06 whereas simu-
lations, using a wide range of techniques, with ideal initial conditions (random short wavelength
perturbations) give ~0.026. A likely explanation of this is the presence of low levels of long
wavelength initial perturbations in the experiments. The experimental results show that mixing in
real situations will usually be significantly greater than that for the ideal theoretical case.

The main purpose of the paper has been to give a direct comparison of results for DNS and ILES
using the same numerical framework. It has been shown here that, provided the mesh resolution
is sufficient to resolve fine-scale structure within the mixing zone, ILES and DNS give very simi-
lar results. This applies to quantities such as distributions mean volume fractions, molecular mix-
ing parameter or turbulence kinetic energy. The Navier-Stokes results given here are not fully-
converged DNS. However, the deviation from fully-converged DNS has been quantified and it
argued that the mainly global results given here are accurate. For quantities such as enstrophy,
which are determined by the small scales present in the flow, DNS is required to get meaningful
results (probably with higher resolution or with higher order numerics being required to obtain
accurate results). DNS may also be needed if more complex physics is present (combustion for
example). If the main purpose of the simulations is to obtain the high-Reynolds behavior of
global properties, then this can be achieved using ILES with much less computer resources than
with DNS. The early stages of the mixing process are influenced by viscosity and diffusivity and
DNS is essential for understanding the influence of Reynolds number and Schmidt number on the
mixing process.

The DNS results given here have used a relatively simple numerical approach. It is argued that
satisfactory results have been obtained for the influence of finite Reynolds number on the mainly
global results presented. Further research is needed to assess the suitability of the method for the
accurate calculation of fine-scale properties.

For many practical applications 3D simulation is not feasible at present and some form of engi-
neering modelling, for example Reynold-Averaged Navier-Stokes (RANS), is needed. Both DNS
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and ILES have an essential contribution to make to calibration and validation of such models. At
present, DNS results may be used for model calibration/validation in simple situations, such as
one-dimensional mixing layers. However, as engineering models need to be applied to much
more complex problems, validation is needed for a wide range of benchmarks. It is advocated that
comparisons of RANS and ILES have an essential role here.
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