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Abstract
Identifying novel compounds or improving bioavailability of drugs requires extensive screening, 
in vitro and in vivo testing and subsequent commercialisation. Traditional methods can be labour 
intensive and time-consuming. Use of modern technologies can reduce these challenges and is best 
achieved through collaboration with researchers specialising in different research fields. The range 
of research activities carried out in our lab is outlined and demonstrates the diversity of techniques 
used in our drug discovery programme.
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Background
Development of new medicines are aimed at curing or preventing diseases or conditions 

without suitable therapeutic product availability, reducing side effects, improving quality of life, 
shrinking the cost on healthcare systems, while significantly extending patients’ lives. However, the 
sophisticated process of drug discovery and development can be an extensive process lasting over 
7-10 years, with a striking average cost of $2.6 billion for each successful drug that reaches the market 
[1]. These daunting cost and time parameters originate from the scientific, technical, and regulatory 
challenges needed to understand drug mechanism of action for complex diseases at molecular level. 
Achieving tangible success subsequently requires investment in highly sophisticated technologies, 
advanced manufacturing processes, and creative research approaches to tackle the ever-growing 
cost and time of the entire process. 

Academic research is often the starting point to develop a hypothesis that correlates the 
activation or inhibition of a protein or signalling pathway to achieve a therapeutic end-point [2]. 
This proceeds to basic research to identify a target and to validate the selection. Progression to a lead 
discovery phase to justify a particular drug development effort follows on from the target selection 
and validation steps. The lead discovery steps undoubtedly require intensive and robust searches 
to find a drug-like small molecule or biological candidate that can progress into preclinical, and if 
successful, into clinical trial, and eventual progression to an approved medicine. 

Our research group’s activities are diverse and carefully designed to cover both ends of the 
lead identification spectrum; through the separation and evaluation of novel compounds from 
natural sources, structural analysis of bio therapeutics, and conjugation of nanoparticles to small 
molecules, antibodies, DNA, and peptides to generate ground-breaking vaccines or “nano-Trojan 
horses” [3-8]. Our approach is in basic research, lead discovery and preclinical development (Figure 
1). We then generally collaborate with industry (small or large Pharma) to achieve the clinical 
development phase. This approach applies, whether dealing with natural products, bio therapeutics 
or nanoparticles.

Natural Product Research
One abundant source of natural products is derived from the plant kingdom, which have fuelled 

the drug discovery process with numerous molecules (small drug-like to complex polymers) over 
the past decades [9,10]. The World Health Organization (WHO) has highlighted the wide utilisation 
of traditional medicine in developing countries [11]. Our group exploits the rich biodiversity of 
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natural sources such as plants, marine organisms, fungi, microbes 
and insects which are crucial resources for identifying key candidate 
molecules [12]. The natural products field was estimated to produce 
or be involved in ~50% of all small drug molecules between the years 
2000-2006, and 10 out of the 44 approved small molecules in 2014 were 
derived from natural products [13,14]. Traditionally, natural products 
are extracted from source materials, concentrated, fractionated, and 
purified. Various traditional and advanced techniques have been 
developed to isolate pure natural products, and the pros and cons 
of each technique have been comprehensively addressed [9,15-17]. 
Our group utilizes traditional techniques, such as Soxhlet solvent 
extraction or infusions to extract constituents, followed by thin layer 
chromatography (TLC) and nuclear magnetic resonance (NMR) 
analysis for chemical structure elucidation, mass spectrometry 
as a confirmatory technique. Open column chromatography (gel 
filtration, vacuum liquid chromatography), is also used. These 
techniques are employed in the early part to achieve extraction, 
isolation andcharacterisation of compounds. For further separation 
and isolation of pure compounds we utilize modern chromatography 
(medium pressure and high pressure liquid chromatography systems) 
and to identify compound location within tissues we employ matrix-
assisted laser desorption/ionization time of flight mass spectroscopy 
(MALDI-TOF MS). Compounds isolated in this way from different 
natural sources have consistently shown promising therapeutic 
potential against various microorganisms, cancer, and diabetes 
[3,4,18,18-22]. A range of bioassays are employed including 96-well 
plate high throughput screening (HTS), enzymatic assays such as 
α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), protein 
tyrosine phosphatase 1B (PTP1B), and lipase assays to investigate 
the anti-diabetic and anti-obesity activities. Active compounds from 
HTS are investigated further for their ability to enhance glucose 
uptake in cell lines such as Caco-2, 3T3 L1 and HepG2 cells. For 
subsequent evaluation of mechanisms of action we have introduced 
new technologies such as molecular biology (polymerase chain 
reaction (PCR) andribonucleic acid (RNA) sequencing) which can 
show which genes are affected and therefore the subsequent research 
can be tailored towards specific disease pathways. Metabolomics is 
used to advance our understanding and development of any potential 
lead molecules [3,23-25].

Bio Therapeutic Developments
The other face of the drug discovery coin relies on the development 

of novel bio therapeutics, including innovative vaccine formulations, 
which have recently gained significant momentum. The shift in 
prominence toward the development of protein therapeutics or 
antibodies is in part reflected by the growing prevalence of biologic 
agents in the portfolios of major biopharmaceutical companies. The 
annual number of first approvals was in the range of 5–8 in 2014 
onwards, with 53 novel antibody therapeutics in Phase 3 studies in 
2016, and ~ 210 novel antibody therapeutics in each of Phase 1 and 
2 of clinical development [26]. Financially, the global sales revenue 
for all monoclonal antibody products was nearly $75 billion in 2013, 
and expected to reach $125 billion by 2020 [27]. This unprecedented 
attraction to antibodies originates from the remarkable structural 
flexibility of these proteins to selectively recognise different antigen 
classes such as proteins, carbohydrates, and lipids, and challenging 
happens like pharmaceutical small molecules, pesticides, and even 
biomarkers that can contribute to the potential detection of life on 
other planets like Mars [8,28-37]. Antibodies not only represent 
potential therapeutics, but can be implemented in diverse bespoke 
applications such as immunodiagnostics, biosensors, photo thermal 
therapies, and nanoparticle conjugation for drug delivery. Such 
approaches are illustrated through projects we have been developing 
in collaboration with a number of small and medium enterprises. 
These projects are based on optimising the conjugation of antibodies 
to nanoparticles and solid surfaces, and will exploit sophisticated 
computational and laboratory techniques to incorporate such 
platforms within point-of-care testing (POCT) diagnostic kits.  

Drug Delivery Formulations
Drug delivery is another concept that is laterally implemented 

with drug discovery in our group if the newly discovered compounds 
are inactive, toxic, or unselective [32]. Improving the bioavailability 
and effects of these compounds, or reducing their toxicities, can be 
achieved by loading them into different types of delivery systems [33]. 
These have the ability to deliver a therapeutic agent to a particular site 
of the body at a specific rate [34]. A wide range of delivery systems 
are available such as lipid nanoparticles, carbon nanotubes, and metal 
nanoparticles [35]. The characteristics of the delivery system with its 
load can be optimised in terms of size, charge, loading efficiency, 

Figure 1: Our drug discovery approach in the pre-clinical development phase in context of the whole drug discovery programme.
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stability, and drug release [36]. Our group has developed a wide range 
of delivery systems being mindful of the changing pharmaceutical and 
market needs, for example the desire for mucosal delivery to replace 
parenteral administration [5,37].  Moreover, our group utilises the 
most advanced techniques for nanoparticle characterisations such 
as dynamic light scattering and Namedrop for determination of 
particle size and atomic force microscopy (AFM) for morphological 
analysis [5]. Figure 2A shows AFM morphology of one of our non-
ionic surfactant vesicles (NISV) that is currently being used in our 
lab for the delivery of different therapeutic agents. We are constantly 
utilising new innovations and have moved away from traditional thin 
film hydration methods used commonly in lipid particle manufacture 
to highly advanced microfluidic [5,6]. Moreover, various other 
delivery approaches have been adopted for the selective delivery of 
vaccines against influenza, tetanus toxoid, and mucosal tolerance 
[7,9,37]. Currently, we are working on the development of highly 
advanced lipid nanoparticles for effective delivery of short interfering 
RNA (siRNA) using advanced techniques for evaluating the delivery 
system such PCR, fluorescence activated cell sorting and in vivo 
bioluminescence imaging. Figure 2B shows one of our experiments 
for monitoring luciferase enzyme suppression by siRNA by measuring 
the bioluminescence through an in vivo imaging system (IVIS).

Both drug discovery and delivery processes have benefited 
from the continuous efforts to apply computational power to the 
combined chemical and biological space in order to streamline drug 
discovery and development. In the biomedical arena, computer-
aided or in silico design is being utilised to accelerate and facilitate hit 
identification, hit-to-lead selection, optimise the pharmacokinetic/
pharmacodynamics profile, anticipate binding modes, structural 
analysis, and to avoid safety issues [38]. In the post genomic era, 
computer-aided drug design has significantly diversified its range 
of applications, spanning most stages of target identification to lead 
discovery, and from lead optimisation to preclinical or clinical trials 
[39-40]. Furthermore, molecular dynamics and computer simulations 
have been successfully used to analyse interfacial dynamics and 

electrostatics, and binding of small molecules, macro-bio molecules, 
or DNA to nanoparticles [41-48]. These advanced computational 
technologies can be highly beneficial to investigate best epitope 
presentation to the immune system. In this respect we have identified 
a number of peptide antigens using molecular dynamics simulations 
to provide comprehensive conformational and structural analysis of 
these peptides for an optimum bespoke conjugation to nanoparticles, 
and to use these conjugates in the development of highly effective 
contraceptive or cancer vaccines.  

Conclusion
From our experience, drug discovery programmes have to evolve 

with advances in new technologies. While traditional techniques 
have their place, modernisation can provide new insights that could 
never be realised using the older and established methodologies. We 
need to embrace the “omics” era and the plethora of tools it provides, 
but be open and flexible to expand our approaches. This necessitates 
collaboration, not only in multidisciplinary networks, but also 
requires closer links to be established with academic-industrial or 
academic-NHS partnerships. In this way, the time taken to achieve 
a successful viable end-product can be realised quicker and at lower 
overall cost.
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