Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Time optimal control systhesis for discrete time hybrid automata

Pang, Y. and Spathopoulos, M.P. (2005) Time optimal control systhesis for discrete time hybrid automata. International Journal of Control, 78 (11). pp. 847-863. ISSN 0020-7179

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, the problem of time-optimal control for hybrid systems with discrete-time dynamics is considered. The hybrid controller steers all trajectories starting from a maximal set to a given target set in minimum time. We derive an algorithm that computes this maximal winning set. Also, algorithms for the computation of level sets associated with the value function rather than the value function itself are presented. We show that by solving the reachability problem for the discrete time hybrid automata we obtain the time optimal solution as well. The control synthesis is subject to hard constraints on both control inputs and states. For linear discrete-time dynamics, linear programming and quantifier elimination techniques are employed for the backward reachability analysis. Emphasis is given on the computation of operators for non-convex sets using an extended convex hull approach. A two-tank example is considered in order to demonstrate the techniques of the paper.