Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A novel protection scheme for an LVDC distribution network with reduced fault levels

Wang, Dong and Emhemed, Abdullah and Burt, Graeme (2017) A novel protection scheme for an LVDC distribution network with reduced fault levels. In: The 2nd IEEE International Conference on DC Microgrids (ICDCM2017), 2017-06-27 - 2017-06-29.

[img]
Preview
Text (Wang-etal-ICDCM-2017-Novel-protection-scheme-for-an-LVDC-distribution-network-with-reduced-fault-levels)
Wang_etal_ICDCM_2017_Novel_protection_scheme_for_an_LVDC_distribution_network_with_reduced_fault_levels.pdf - Accepted Author Manuscript

Download (900kB) | Preview

Abstract

Low Voltage Direct Current (LVDC) distribution is one of the new promising technologies that have the potential to accelerate the wider integration of distributed renewables. However, adding new power electronics to convert AC to DC will introduce new forms of faults with different characteristics. Converters with inherent fault current limiting and blocking capabilities will significantly limit the fault currents, resulting in significant impacts on the performance of existing LV overcurrent protection schemes. New protection methods based on the change in the DC voltages have been proposed recently by different researches. The issue with these methods is that the protection relays of the un-faulted feeders will also see the same change in the voltage for certain faults, leading to substandard selectivity and unnecessary tripping. This paper investigates these challenges, and presents a novel DC protection method which is based on the use of the combination of two components: the voltage change (dv/dt) and the change of current (di/dt). The new method is mainly developed to detect and locate DC faults with reduced fault current levels within DC distribution networks. The introduced protection concept is tested on an LVDC distribution network example using PSCAD/EMTDC simulation tool.