Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Smart integrated adaptive centralized controller for islanded microgrids under minimized load shedding

Karimi, M. and Azizipanah-Abarghooee, R. and Uppal, H. and Hong, Q. and Booth, C. and Terzija, V. (2017) Smart integrated adaptive centralized controller for islanded microgrids under minimized load shedding. In: 2017 5th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), 2017-04-19 - 2017-04-21.

[img]
Preview
Text (Karimi-etal-SGCC-2017-Smart-integrated-adaptive-centralized-controller-for-islanded-microgrids-under-minimized-load-shedding)
Karimi_etal_SGCC_2017_Smart_integrated_adaptive_centralized_controller_for_islanded_microgrids_under_minimized_load_shedding.pdf - Accepted Author Manuscript
License: Open Government Licence (OGL) 3.0

Download (423kB) | Preview

Abstract

In this paper, a smart integrated adaptive centralized controller is proposed for monitoring and controlling integrated renewable energy sources (RESs), both for intentional and unintentional islanding modes of operation for microgrids, as well as, for a variable range of transient load shedding and fault scenarios corresponding to electrical power system outages. It is demonstrated that the proposed smart adaptive controller is capable of instructing fast frequency response by proper coordination of the dispatch of RESs units such as, mini-hydro, Photovoltaic (PV), Battery Energy Storage System (BESS) and standby diesel generators. In particular, the BESS used as power reserve, at the early stage of fault events can prevent detrimental and uncontrollable system frequency decline and the extent of load shedding. In summary, the performance of a centralized controller in terms of a fast frequency response recovery feature is validated for an actual microgrid distribution network of Malaysia. The demonstration of this intelligent control scheme highlights the advantage of utilizing the fast power recovery response of energy storage and standby generator, which fulfil the criteria for minimal load shedding from the main grid, during the unintentional microgrid islanding conditions.