Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

DC protection of a muti-terminal HVDC network featuring offshore wind farms

Parker, Max and Finney, Stephen and Holliday, Derrick (2017) DC protection of a muti-terminal HVDC network featuring offshore wind farms. Energy Procedia. ISSN 1876-6102 (In Press)

[img]
Preview
Text (Parker-Finney-Holliday-EP-2017-DC-protection-of-a-multi-terminal-HVDC-network)
Parker_Finney_Holliday_EP_2017_DC_protection_of_a_multi_terminal_HVDC_network.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (821kB) | Preview

Abstract

A protection scheme for DC faults has been designed for a multi-terminal HVDC network used to transfer energy from three large offshore wind farms to shore. The system uses open access models created in the EU-funded BEST-PATHS project, including a manufacturer-supplied wind farm model. Tripping conditions for the DC circuit breakers are found through simulation, along with current limiting inductor sizes, based on the use of a hybrid circuit breaker. Simulations of faults in the HVDC network show the ability of the protection scheme to isolate the fault, and the converter stations and wind turbines are able to ride-through the fault without tripping based on the 5ms switching time of the circuit breakers Longer switching times will cause significant rises in the offshore grid frequency, which could cause the turbines to trip.