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Abstract. As one of the most popular additive manufacturing (AM) technologies 
in the aerospace industry, laser metal deposition (LMD) employs moving laser to 
melt the coaxially ejected metal powders near the laser focal point, forms a molten 
pool on the substrate and consequently traps the powders and solidifies the tracks 
to construct the components with complex geometry layer-by-layer. The 
mechanical properties and functionality-related performance of the deposited 
components by LMD depend on the factors such as metal powder’s material/shape, 
supply status of powders and gas, laser-related manufacturing parameters. 
According to these influencing factors, there are 4 sub-processes to be modelled in 
sequence to realize holistic LMD modelling: (1)CFD simulation of the gas-powder 
flow; (2)laser-powders interaction; (3)formation of molten pool due to laser 
irradiation with mass and heat addition; (4)solidification of molten pool with 
deposited metal powders and formed solid track. In this paper, gas-powder flow 
within the internal passages of laser deposition head and then ejecting from the 
nozzles’ tips were modelled and analyzed to give a well-depicted image of the 
related key physics during the LMD process. An in-depth study of the gas-powder 
flow in LMD via numerical simulation could give a better understanding of 
subsequent formation mechanism of molten pool and deposited tracks, which will 
eventually offer more controllable and optimized processing parameter sets to 
improve the functionality-related performance of LMDed parts.  
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1. Introduction 

Laser metal deposition (LMD) is a promising additive manufacturing technology for 
the fabrication of the near net shape parts with streams of metal powder for some high 
performance applications in the aircraft & aerospace, high performance automotive, 
medical device, nuclear industry[1]. Many physical phenomena and influencing factors 
involve in the LMD additive manufacturing process and all of them will have direct or 
indirect effect on the microstructure and material properties of the final deposited 
parts[2-4]. A full control of these influencing factors and processing variables such as 
laser power, scanning speed, powder density, powder feed rate, size distribution and 
other processing variables, is required to achieve high-quality deposited parts. However, 
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5. Conclusions 

LMD, based on blowing a powder stream into a moving laser-induced melt pool, is 
widely employed in the field of advanced manufacturing, such as rapid manufacturing, 
surface enhancement, tooling and repair. In LMDS, metal powders firstly travel in the 
laser deposition head, then eject out from the 4 nozzles, gradually converge into the 
focal point and get molten near or within the molten pool, and finally deposited as a 
track layer on the substrate. Modelling of LMD is difficult as it is characterized by 
multiple phase changes, mass and heat flows. In this research, the whole LMD process 
is analyzed and the gas-powder flow including powder conveyance and dispersion are 
detailedly investigate due to its direct influence on the subsequent track formation and 
residual stress on the substrate. The proposed CFD numerical model of gas-powder 
flow could be used to gain full insight into the powder deposition process and to 
analyze the influence of the geometrical & processing parameters such as the standoff 
distance, volumetric gas flow rate, and powder mass flow rate on the quality of the 
LMD. Also, the developed model provides important parameters for the calculation of 
the heat transfer boundary condition for the holistic LMD process once the laser 
radiation is added into the model. 
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