Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Thin-Walled Structures - Advances and Developments, Proceedings of the 3rd ICTWS Conference 2001

Zaras, J. and Kowal-Michalska, K. and Rhodes, J. (2001) Thin-Walled Structures - Advances and Developments, Proceedings of the 3rd ICTWS Conference 2001. Elsevier Science. ISBN 0080439551

Full text not available in this repository.

Abstract

This volume contains the papers presented at the Third International Conference on Thin-Walled Structures, Cracow, Poland on June 5-7, 2001. There has been a substantial growth in knowledge in the field of Thin-Walled Structures over the past few decades. Lightweight structures are in widespread use in the Civil Engineering, Mechanical Engineering, Aeronautical, Automobile, Chemical and Offshore Engineering fields. The development of new processes, new methods of connections, new materials has gone hand-in-hand with the evolution of advanced analytical methods suitable for dealing with the increasing complexity of the design work involved in ensuring safety and confidence in the finished products. Of particular importance with regard to the analytical process is the growth in use of the finite element method. This method, about 40 years ago, was confined to rather specialist use, mainly in the aeronautical field, because of its requirements for substantial calculation capacity. The development over recent years of extremely powerful microcomputers has ensured that the application of the finite element method is now possible for problems in all fields of engineering, and a variety of finite element packages have been developed to enhance the ease of use and the availability of the method in the engineering design process.