Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Development of a novel probe for remote visual inspection of pipework

Dobie, Gordon and Summan, Rahul and West, Graeme and Stewart, Callum and Bolton, Gary and Offin, Douglas (2017) Development of a novel probe for remote visual inspection of pipework. Nuclear Future, 13. ISSN 1745-2058 (In Press)

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The interior visual inspection of pipework is a critical inspection activity required to ensure the continued safe, reliable operation of plant and thus avoid costly outages. Typically, the video output from a manually deployed probe is viewed by an operator with the task of identifying and estimating the location of surface defects such as cracks, corrosion and pitting. However, it is very difficult to estimate the nature and spatial extent of defects from the often disorientating small field of view video of a relatively large structure. This paper describes the development of a new visual inspection system designed for inspecting 3 - 6 inch diameter pipes. The system uses a high resolution camera and structure from motion (SFM) algorithm to compute the trajectory of the probe through the pipe. In addition a laser profiler is used to measure the inner surface of the pipe and generate a meshed point cloud. The camera images are projected onto the mesh and the final output of the system is a photorealistic 3-D model of the internal surface of the pipework.