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1. Introduction 

Currently, the two most widespread methods for modelling the particulate phase in numerical 

simulations of gas-solid flows are discrete particle simulation (see, e.g., Mikami, Kamiya and 

Horio 1998), and the two-fluid approach, e.g. kinetic theory models (see, e.g., Louge, 

Mastorakos and Jenkins 1991). In both approaches the gas phase is described by a locally-

averaged Navier-Stokes equation and the two phases are usually coupled by a drag force. Due 

to the large density difference between the particles and the gas, inter-phase forces other than 

the drag force are usually neglected, so it plays a significant role in characterising the gas-

solid flow. Yasuna, Moyer, Elliott and Sinclair (1995) have shown that the solution of their 

model is sensitive to the drag coefficient. In general, the performance of most current models 

depends critically on the accuracy of the drag force formulation.  

 

2. Problems with the drag force formulation 

The drag force experienced by a spherical particle of diameter d moving in an infinite fluid of 

density ȡ1 is given by 
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where u is the velocity of the particle, V is the fluid velocity at infinity, and CD is the drag 

coefficient. If the particle is surrounded by many others, and the local particle volume 

fraction is ε2, the drag force volume-averaged over a cell containing only a single particle 

should be given by 
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where the volume of the cell, δV1=1/6πd
3
/ε2, is the characteristic element of volume of a two-

phase mixture containing a single particle and associated fluid; v is the averaged velocity of 
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this fluid over δV1. However, the particle volume fraction has been proven to have a more 

complex and subtle influence on the drag force (e.g. Wen and Yu 1966; Di Felice 1994). 

Generally, the momentum transfer coefficient, β, can be expressed as  

( 2
12

4

3 ε
ρε

β f
d

CD uv −= ) ,       (3) 

and many forms for the correction factor f(ε2) have been proposed. For example, Di Felice 

(1994) gave 

( ) χεε −= 22f ,         (4) 

where χ is an empirical coefficient, which depends on the particle Reynolds number Rep via  
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In discrete particle simulations, the usual expressions for the momentum transfer coefficient 

are extended from the work of Ergun and Orning (1949), Ergun (1952) and Wen and Yu 

(1966), where the influence of solid volume fraction is incorporated: 
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where ȝ is the fluid viscosity and ε1 is the local fluid volume fraction such that ε1+ε2=1. 

Despite the inconsistency at ε1=0.8 for equations (6) and (7), numerical simulations using 

these formulations show good agreement with experimental data from pneumatic conveyors 

and fluidised beds (Kawaguchi, Tanaka and Tsuji 1998; Mikami, Kamiya and Horio 1998; 

Hoomans, Huipers, Briels and van Swaaij 1996).  

 

However, the work of Ergun and Wen and Yu has also been widely adopted within many 

two-fluid models for gas-solid flows, where the particulate and fluid velocities are averaged 

over the much larger volume δV2 which contains statistically many particles (see Figure 1). 

For example, Neri and Gidaspow (2000) and Nieuwland, van Sint Annaland, Kuipers and van 

Swaaij (1996) use momentum transfer coefficients of a similar form to those given in 

equations (6) and (7) above, viz. 
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where V and U are the gas and particle velocities, respectively, averaged over the element 

volume δV2. If we assume that, at least, V equals v  for the gas, the only difference between 

equation pairs (6) and (8), and (7) and (9) is whether an instantaneous or an averaged 

particulate velocity is used. 

 

The original phenomenological Ergun formula is based on observations on a fixed bed where 

the particles have no relative motion. If it is to be extended to freely moving particles, not 

only the particle volume fraction but also the random fluctuational velocity of individual 

particles should be considered. The work of Wen and Yu also only addressed the effect of 

voidage on the drag force. If we assume the drag force acting on a particle surrounded by 

others can be expressed by equations (2) and (3), the averaged drag force in a two-fluid 

model can be re-derived as follows. 

 

3. A new expression for the averaged drag force 

Anderson and Jackson’s (1967) rigorously-derived two-fluid model for particle-fluid flows 

required volume-averaging the point equations of motion for the fluid and individual 

particles. In order to smooth out high frequency fluctuations, the elemental volume chosen 

for this was δV2, rather than δV1 (see Figure 1). The choice of the requisite volume element is 

discussed in Anderson and Jackson (1967).  

 

For gas-solid flows, especially with high particle concentration, the inertial energy loss 

(which is proportional to the relative velocity squared) is mainly due to local flow 

contraction, expansion and change in flow direction, rather than gas phase turbulence: this 

inertial loss also occurs when the gas flow is laminar. As Niven (2002) pointed out: “in fully 

turbulent flow through a packed bed, local losses will very likely dominate the overall 

pressure loss”. Consequently, the gas turbulence may not be the dominant mechanism in 

particle-gas momentum and energy exchange. In any case, v  is also an averaged gas velocity 

on the element volume of δV1. Therefore we assume Vv = in the derivation below and 

decompose the velocity of a particle as uUu ′+= , where u′  is the instantaneous 

fluctuational velocity of the particle. The distribution of particle fluctuational velocity in the 

elemental volume įV2 is assumed to be described by the Maxwellian 
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where T is the granular temperature, given by 
23/1 u′ . 

 

The averaged drag force over δV2, containing n particles, i.e. n cells each of volume δV1, can 

be given by 
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where f(u′) is particle velocity distribution function. Substituting equations (2) and (3) into 

this equation, and assuming the gradient of the fluid volume fraction is negligible in the 

elemental volume δV2, we obtain 
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where the drag coefficient, CD, is treated as an “averaged value” over δV2. Under the assumed 

Maxwellian distribution of the particle fluctuation velocity, we find 
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If VU −<π/8T , which is satisfied by most gas-solid flows in pneumatic conveying 

systems and circulating fluidised beds, equation (12) then becomes 
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If  is expressed in the standard form dragF )(0 UV −β , then, 
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Here, Ur is defined as the mean magnitude of the slip velocity: 
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Because there are many different formulas for the standard CD, and further uncertainty is 

inevitably introduced when considering the turbulence effects etc. on this coefficient, in the 

derivation of equation (12) CD is treated as a function of Ur, and de-coupled from the integral 

procedure. Then, the commonly-adopted expression for the drag coefficient is that for a 

single particle, given experimentally by Kürten, Raasch and Rumpf (1966), 
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which is valid for particle Reynolds numbers between 0.1 and 4000. The CD used in equation 

(15) could be extended from equation (17) by using a particle Reynolds number based on the 

new Ur, i.e. 

μ
ρ dU r

p
1Re = .        (18) 

If the form of f(ε2) is that given in equations (6) and (7), the corresponding new expressions 

for the averaged drag force in a two-fluid model are 
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Both β1 of equations (8) and (9), and β0 of equations (19) and (20) incorporate the influence 

of solid volume fraction. Additionally, β0 addresses the influence of the relative random 

motion of the particles.  

 

4. Discussion 

The impact of this new β0 on predicted mean slip velocities and pressure drops in a gas-solid 

system is now discussed; the vertical flow of solid particles in a pipe is a common test-case 

for two-phase flow models. Predicted particulate axial velocity profiles using the previous 

expression for the inter-phase momentum transfer coefficient, β1, as given in equation (9), 

and the present one, β0, as given in equation (20), are shown in Figure 2. The experimental 

data and system parameters are taken from the work of Maeda, Hishida and Furutani (1980). 

Details of the numerical simulation are given in Zhang and Reese (2001), and the influence of 

the particle volume fraction on the drag force is treated in the same way as Wen and Yu 

(1966). As β0 takes into account the relative fluctuational motion between the two phases, a 
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smaller slip velocity is predicted. This then leads to a lower axial pressure drop along the 

pipe, which can be seen in Figure 3. There is a negligible difference between profiles of 

normalised gas axial velocity calculated using β0 and β1.  

 

Figure 3 compares the experimental data of Miller and Gidaspow (1992) with the simulation 

. Conclusions 

dels for gas-solid flows, the averaged drag force plays an essential role in 

eferences 

.B. & Jackson, R. (1967). Fluid mechanical description of fluidized beds: 

Di interaction systems. Int. J. 

Er hrough packed columns. Chem. Eng. Prog. 48, 89. 

nd fluidised 

Ho riels, W.J. & Van Swaaij, W.P.M. (1996). Discrete 

results of the model of Neri and Gidaspow (2000) using β1, and the present model using β0. 

In the two simulations, all other model parameters apart from the momentum transfer 

coefficient are identical. The physical system examined is, again, vertical pipe flow, with a 

superficial gas velocity of 2.89 ms
-1

. The most evident impact of using the new β0 is that the 

predicted axial pressure gradient becomes smaller. Simulation results using β0 show better 

quantitative agreement with the experimental measurements in both Figures 2 and 3. This 

indicates that the validity and applicability of the new expression for β0 for the inter-phase 

momentum transfer coefficient are worth further exploration. 

 

5

In two-fluid mo

coupling the gas and particles. As this drag force has a considerable effect on predicted flow 

characteristics, it is important to use the most accurate available expressions. The averaged 

drag force needs not only to incorporate the influence of solid volume fraction but also to 

address the effect of the random fluctuational motion of the particles. 

 

R

Anderson, T

comparison with theory and experiment. I&EC Fund. 6, 527. 

 Felice, R. (1994). The voidage function for fluid-particle 

Multiphase Flow 20, 153. 

gun, S. (1952). Fluid flow t

Ergun, S. & Orning, A.A. (1949). Fluid flow through randomly packed columns a

beds. Ind. Eng. Chem. 41(6), 1179. 

omans, B.P.B., Huipers, J.A.M., B

particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a 

hard-sphere approach. Chem. Eng. Sci. 51, 99. 

6 



Kawaguchi, T., Tanaka, T. & Tsuji, Y. (1998). Numerical simulation of two-dimensional 

fluidized beds using the discrete element method (comparison between the two- and three-

dimensional models). Powder Tech. 96, 129. 

Kürten, H., Raasch, J. & Rumpf, H. (1966) Chem. Ing. Tech. 38, 941. 

Louge, M.Y., Mastorakos, E. & Jenkins, J.K. (1991). The role of particle collisions in 

pneumatic transport. J. Fluid Mech. 231, 345. 

Maeda, M., Hishida, K. & Furutani, T. (1980). Optical measurements of local gas and particle 

velocity in an upward flowing dilute gas-solid suspension. Polyphase Flow and Transport 

Technology, 211. Century 2-ETC, San Francisco. 

Mikami, T., Kamiya, H. & Horio, M. (1998). Numerical simulation of cohesive powder 

behavior in a fluidized bed. Chem. Eng. Sci. 53, 1927. 

Miller, A. & Gidaspow, D. (1992). Dense, vertical gas-solid flow in a pipe. AIChE J. 38, 

1801. 

Neri, A. & Gidaspow, D. (2000). Riser hydrodynamics: simulation using kinetic theory. 

AIChE J. 46, 52. 

Nieuwland, J.J., van Sint Annaland, M., Kuipers, J.A.M., van Swaaij, W.P.M. (1996) 

Hydrodynamic modelling of gas/particle flows in riser reactors. AIChE J 42, 1569. 

Niven, R.K. (2002) Physical insight into the Ergun and Wen & Yu equations for fluid flow in 

packed and fluidised beds. Chem. Eng. Sci. 57, 527.  

Wen, C.Y. & Yu, Y.H. (1966). A generalized method for predicting the minimum 

fluidization velocity. AIChE J. 12, 610. 

Yasuna, J.A., Moyer, H. R., Elliott, S. & Sinclair, J.L. (1995). Quantitative predictions of 

gas-particle flow in a vertical pipe with particle-particle interactions. Powder Technol. 84, 

23. 

Zhang, Y. & Reese, J.M. (2001). Particle-gas turbulence interactions in a kinetic theory 

approach to granular flows. Int. J. Multiphase Flow 27, 1945.  

7 



 

 

 

δV2 

δV1 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of the elemental volumes δV1 and δV2 in a freely-moving gas-solid flow; 

solid circles represent particles. The inner broken line represents the boundary of the 

characteristic volume element δV1, containing a single particle with local voidage ε1. The 

outer broken line represents the boundary of δV2, the elemental volume which contains 

statistically many freely-moving particles.  
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Figure 2 Comparison between numerical predictions (using ȕ0 and ȕ1) and experimental data 

for the radial variations of normalized axial velocity of both phases, v/vc and u/vc. The mass 

loading ratio is 0.3, the Reynolds number 22,000 and the particles are 136 μm diameter. 

Other parameters as in Maeda et al. (1980), which reports the experimental measurements.  
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Figure 3 Comparison between numerical predictions (using ȕ0 and ȕ1) and experimental data 

for the variation of axial pressure gradient with solid mass flow rate. The superficial gas 

velocity is 2.89 ms
-1

 and the particles are 75 μm diameter. Other parameters as in Miller and 

Gidaspow (1992), which reports the experimental measurements. 
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