Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Continuum modelling of granular particle flow with inelastic inter-particle collisions

Zhang, Y.H. and Reese, J.M. (2003) Continuum modelling of granular particle flow with inelastic inter-particle collisions. Chemical Engineering Research and Design, 81 (4). pp. 483-488. ISSN 0263-8762

PDF (strathprints006099.pdf)

Download (148kB) | Preview


The kinetic theory of granular flow is a successful model for gas-solid flows. However, inelastic collisions between particles, among other mechanisms, cause agglomeration of particles, which may be the reason why undue sensitivity of the model to any slight inelasticity in inter-particle collisions has been seen previously. In contrast to a dry (i.e. no interstitial gas) granular system, this tendency to agglomerate in a gas driven two-phase system may be countered by the carrier gas turbulence. In this paper, a heuristic model for particle gas turbulence interaction is introduced within the scope of a generalized kinetic theory model which incorporates the carrier fluid effect on particulate stresses. The numerical results for the flow of granular particles in vertical pipes, which considers slightly inelastic inter-particle collisions, are in reasonably good agreement with published experimental data. Even in this relatively simple model, the results indicate that the interactions between the particle phase and gas turbulence need to be appropriately addressed in any kinetic theory based model for gas solid flows.