Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The influence of space discretization on the accuracy of numerical simulation of heat and moisture transport in porous building materials

Galbraith, G.H. and Li, J. and McLean, R.C. and Baker, P.H. (2001) The influence of space discretization on the accuracy of numerical simulation of heat and moisture transport in porous building materials. Journal of Thermal Envelope and Building Science, 25 (2). pp. 143-160. ISSN 1097-1963

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It is well recognised that the accuracy of numerical solutions for coupled heat and moisture transport problems are highly dependent upon the space discretization regime adopted. While a range of possible space discretization methods are outlined in the literature, most of the commonly available simulation models for heat and moisture transfer through building constructions adopt the one-way expansion method. As part of the process of developing a new simulation model based on the Control Volume technique, the Authors have conducted a range of computer simulations to study the influence of space discretization on modelling results. Comparisons between different space discretization methods are presented which show that the two-way expansion method generally produces the best solution. This method has now been adopted by the Authors and has the advantage of avoiding the need to use extremely fine grids even when modelling complex building structures.