Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Improving the accuracy of transformer DGA diagnosis in the presence of conflicting evidence

Aizpurua, Jose Ignacio and Catterson, Victoria M. and Stewart, Brian G. and McArthur, Stephen D.J. and Lambert, Brandon and Ampofo, Bismark and Pereira, Gavin and Cross, James G. (2017) Improving the accuracy of transformer DGA diagnosis in the presence of conflicting evidence. In: 2017 IEEE Electrical Insulation Conference (EIC). Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ. (In Press)

[img]
Preview
Text (Aizpurua-etal-EIC-2017-Improving-the-accuracy-of-transformer-DGA-diagnosis)
Aizpurua_etal_EIC_2017_Improving_the_accuracy_of_transformer_DGA_diagnosis.pdf - Accepted Author Manuscript

Download (413kB) | Preview

Abstract

Transformers are critical assets for the reliable and cost-effective operation of the power grid. Transformers may fail if condition monitoring does not identify degraded conditions in time. Dissolved Gas Analysis (DGA) focuses on the examination of the dissolved gasses in the transformer oil and there exist different methods for transformer fault diagnosis based on different analyses of the gassing levels. However, these methods can give conflicting results, and it is not always clear which model is most accurate in a given situation. This paper presents a novel evidence combination framework for DGA based on Bayesian networks. Bayesian network models embed expert knowledge along with learned data patterns and evidence combination which aids in the consistency of analysis. The effectiveness of the proposed framework is validated using the IEC TC 10 dataset with a maximum diagnosis accuracy of 88.3%.