Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs

Lee, C.K. and Abdel-Moneim, S.A. (2001) Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs. International Communications in Heat and Mass Transfer, 28 (2). pp. 161-170. ISSN 0735-1933

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Heat transfer and flow behaviours past a horizontal surface with two-dimensional transverse ribs were numerically investigated using a CFD model. The present model was adopted for turbulent flow of air past a number of rib arrays with different rib pitch to height ratios heated with a uniform heat flux. The temperature profiles and the local heat transfer coefficients as well as the flow velocity and turbulence characteristics were predicted. The results showed that the presence of the transverse ribs yields a significant enhancement of the heat transfer compared with that for a flat plate and the predicted heat transfer coefficients showed good agreement with previous experimental results. Also, peaks in local heat transfer coefficients were predicted within the interrib regions and were found to coincide with the points of reattachment of the separated flows.