Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs

Lee, C.K. and Abdel-Moneim, S.A. (2001) Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs. International Communications in Heat and Mass Transfer, 28 (2). pp. 161-170. ISSN 0735-1933

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Heat transfer and flow behaviours past a horizontal surface with two-dimensional transverse ribs were numerically investigated using a CFD model. The present model was adopted for turbulent flow of air past a number of rib arrays with different rib pitch to height ratios heated with a uniform heat flux. The temperature profiles and the local heat transfer coefficients as well as the flow velocity and turbulence characteristics were predicted. The results showed that the presence of the transverse ribs yields a significant enhancement of the heat transfer compared with that for a flat plate and the predicted heat transfer coefficients showed good agreement with previous experimental results. Also, peaks in local heat transfer coefficients were predicted within the interrib regions and were found to coincide with the points of reattachment of the separated flows.