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Efficient Delegated Private Set Intersection on
Outsourced Private Datasets

Aydin Abadi, Sotirios Terzis, Roberto Metere, Changyu Dong

Abstract—Private set intersection (PSI) is an essential cryptographic protocol that has many real world applications. As cloud
computing power and popularity have been swiftly growing, it is now desirable to leverage the cloud to store private datasets and
delegate PSI computation to it. Although a set of efficient PSI protocols have been designed, none support outsourcing of the datasets
and the computation. In this paper, we propose two protocols for delegated PSI computation on outsourced private datasets. Our
protocols have a unique combination of properties that make them particularly appealing for a cloud computing setting. Our first
protocol, O-PSI, satisfies these properties by using additive homomorphic encryption and point-value polynomial representation of a
set. Our second protocol, EO-PSI, is mainly based on a hash table and point-value polynomial representation and it does not require
public key encryption; meanwhile, it retains all the desirable properties and is much more efficient than the first one. We also provide a
formal security analysis of the two protocols in the semi-honest model and we analyze their performance utilizing prototype
implementations we have developed. Our performance analysis shows that EO-PSI scales well and is also more efficient than similar
state-of-the-art protocols for large set sizes.
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1 INTRODUCTION

P RIVATE set intersection (PSI) is a cryptographic protocol that
allows parties to compute the intersection of their datasets

without revealing anything about the datasets beyond the inter-
section [2]. PSI has a range of real-world applications including
privacy-preserving data mining [3], like scenarios where mutu-
ally distrusting companies can find out common customers for
joint offers without sharing their whole customer data, or ones
where social welfare organizations can identify common benefits
recipients while protecting the privacy of their beneficiaries; or
even homeland security [4], allowing security agencies to find
airline passengers in no-fly lists without having access to the
whole passenger list or revealing their no-fly list. Also, PSI can be
utilized as a sub-routine in larger privacy-preserving computations
such as relationship path discovery in social networks [5], botnet
detection [6], etc. Due to the importance of PSI, researchers have
designed numerous PSI protocols (see section 2). Traditionally,
PSI protocols are designed for scenarios in which data owners
interact directly with each other using locally stored datasets and
jointly compute the set intersection. However, the emergence of
cloud computing calls for a change.

Cloud computing offers flexible and cost effective storage
and computation resources to clients and has been attracting
the attention of individuals and businesses as a vital enabling
technology [7]. A report by the IBM Institute for Business Value in

O-PSI was introduced in a paper that appears in the Proceedings of the 30th
International Conference on ICT Systems Security and Privacy Protections
(SEC 2015), pp. 3 – 17 [1].
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2012 1 found that cloud computing is driving business innovation
along a number of dimensions, with its ability to enable increased
collaboration with external partners and its cost advantages as the
most important objectives for business adoption. Organizations
have been keen to adopt cloud computing in order to reap the
benefits it promises. A 2016 RightScale report 2 found that 95% of
organizations surveyed are running applications or experimenting
with the cloud. In general, “surveys show that more than half of
all enterprises consider the cloud to be an essential part of their
business models and are willing to devote 50% or more of their
IT budget to the cloud” [8], while IDC says that two-thirds of
enterprise IT spending will be cloud based by 2020 3.

Interestingly public cloud adoption rates range between 85%
to 90% depending on the survey [8], while according to the
RightScale report, use of public clouds has increased with 17% of
enterprises surveyed now having more than 1,000 VMs, up from
13% in 2015. At the same time, Forrester analyst Dave Bartoletti
has found that enterprises are now looking at cloud as a viable
place to run core business applications, with several companies
having become more comfortable hosting critical software in the
public cloud, a trend he expects to continue with a heavier reliance
on public cloud providers 4.

Although certain benefits have proved harder to realize, like
reduction of IT costs and IT complexity, improvement of IT team
efficiency, and to a lesser extent increase in business agility [9],
enterprises report as positive outcomes of cloud adoption amongst
others enhancement of the general business model and increased

1. http://www-935.ibm.com/services/us/gbs/thoughtleadership/
ibv-power-of-cloud.html

2. http://assets.rightscale.com/uploads/pdfs/
RightScale-2016-State-of-the-Cloud-Report.pdf

3. http://talkincloud.com/cloud-computing-research/
doyle-report-idc-says-two-thirds-enterprise-it-spending-will-be-cloud-based

4. http://www.cio.com/article/3137946/cloud-computing/
6-trends-that-will-shape-cloud-computing-in-2017.html
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productivity from application users and business user groups [8].
Moreover, in the RightScale report participants identified faster
access to infrastructure (62%), greater scalability (58%), higher
availability (52%), and faster time to market (52%) as significant
cloud benefits that grow with cloud adoption maturity. These
advantages mean that according to the report, participants’ cloud
initiatives involve moving more workloads to the cloud (57%
and 35% for enterprises and small and medium-size businesses
respectively), expanding public cloud use (46% and 38%), and
implementing a cloud first strategy (44% and 29%). In addition
to this, public cloud growth is expected to outpace private cloud
growth 5, with reports showing strong growth in public cloud
workloads while on-premise ones fall, with both business-critical
and non-critical workloads in the public cloud doubling over the
next two years.

In a context where organizations embrace public clouds for
core and mission-critical functions and reap clear business benefits
beyond cost reductions from the exploitation not only of their stor-
age but also their computation capabilities, the interest in taking
advantage of these capabilities securely has been growing (e.g.
[10], [11], [12], [13], [14]). Several research efforts by industry
and academia have been directed towards delegated PSI protocols
to realize organizational objectives [15], [16], [17], [18], [19],
[20]. However, designing a PSI protocol that allows delegation of
storage and computation to the cloud is not an easy task. There are
several significant differences between this delegated PSI scenario
and the traditional PSI case.

The first major difference is in the security model. In tradi-
tional PSI, two parties run an interactive protocol. Although they
do not trust each other, they fully trust their local computational
resources e.g. data storage, hardware and software. In delegated
PSI, data storage and computation are now outsourced to a cloud
server. The server is run and managed by an external party whose
interests may not fully align with those of its clients and it may
violate, intentionally or accidentally, data privacy agreements. So,
it is difficult for the clients to fully trust the cloud with their
sensitive data. Ideally, the untrusted cloud server should be able to
carry out computation over outsourced datasets that belong to the
clients, but should not learn anything about the stored datasets or
the computation result. Designing a protocol for this model is more
challenging because security has to be guaranteed not only against
the other parties, as in the original PSI model, but also against
the additional untrusted cloud server. As we show in section 2,
quite a few protocols designed for the delegated PSI scenario
to date actually have security problems and leak information to
the server. Also, PSI computation involves datasets belonging to
different parties. In traditional PSI, each party has full control over
their own datasets. In delegated PSI, datasets are outsourced, and
clients have to delegate their control to the cloud server. So, it is
necessary to have an enforceable authorization mechanism such
that the computation can only take place if all data owners agree.

The second major difference is in the computation model. At
the center of cloud computing is the concept of outsourcing, as a
result of which several new requirements arise. One requirement
is that clients should not have to maintain a local copy after
outsourcing their datasets. Otherwise, the clients will lose out
on some of the cost benefits that use of cloud resources enables.
Also, in order to facilitate collaboration with others, clients should

5. http://talkincloud.com/cloud-computing-research/
public-cloud-growth-outpace-private-cloud-next-12-months-report

be able to outsource their datasets once and use them for many
PSI computations, rather than downloading and re-encoding the
datasets for each computation. Otherwise, it would be better for
clients to just keep a local copy of the datasets. In reality a cloud
provider may serve many clients who may not know each other.
Thus each client should be able to outsource its datasets inde-
pendently without knowing anything about other parties’ data or
having to negotiate, for example, a shared key, with other parties.
This requirement seems trivial but turns out to be quite challenging
when the server is not fully trusted. To prevent the server from
knowing the outsourced datasets, they have to be encrypted, and
requiring clients to outsource their data independently, the datasets
would be encrypted under independent keys. The server, then,
needs to use ciphertexts encrypted under independent keys when
computing PSI, which is a highly non-trivial task.

In this paper, we present two protocols for delegated PSI on
outsourced private datasets. Our first protocol, O-PSI, is based
on additive homomorphic encryption and point-value set repre-
sentation. The protocol lets clients independently outsource their
datasets by representing them as blinded polynomials. To achieve
delegated PSI computation, homomorphic encryption is used to
“switch” blinding factors so that the outsourced datasets blinded
under different blinding keys can now be combined in the compu-
tation process. The protocol ensures that intersections can only be
computed with the permission of all the clients and that the result
(i.e. the intersection and its cardinality) will be protected from the
cloud. The protocol also allows the datasets to be used securely an
unlimited number of times without the need to secure them again.
Although O-PSI has all the desirable properties, it is somewhat
inefficient, as it requires costly homomorphic encryption (opera-
tions) which has a major impact on its performance. To mitigate
this problem, we propose a more efficient protocol, EO-PSI, that
preserves all O-PSI’s desirable characteristics, while requires no
public key encryption or exponentiation operations. The protocol
also lets clients outsource their datasets by representing them as
blinded polynomials. However, by changing the way the blinding
is done and the interaction between the clients, the protocol no
longer needs to “switch” blinding factors in order to combine
the outsourced datasets in the computation process. We further
improve the protocol performance by leveraging hash tables. As a
result, EO-PSI is 1 - 2 orders of magnitude faster than O-PSI. We
also provide a formal security analysis of the two protocols, and
analyze their performance based on prototype implementations
we have developed. Our performance analysis shows that EO-PSI
scales well and it performs better than not only O-PSI but also
other similar state-of-the-art protocols when the dataset is large.

2 RELATED WORK

Private Set Intersection (PSI) was initially introduced in [2]. Fol-
lowing that many protocols such as [4], [21], [22], [23], [24], [25],
[26], [27] were proposed. Among them, [21] provides a number
of protocols supporting further private set operations based on
additive homomorphic encryption and polynomial representation
of sets. In [4], [22], the first PSI protocols with linear complexity
(in the semi-honest and malicious models respectively) were
proposed. In addition, [23], [24] proposed PSI protocols that allow
result recipients to hide their set size from the other party during
the computation of the intersection, while [24] also proposed
protocols that output only the cardinality of the intersection.
More recently, some efficient protocols, like [25], [26], [27], have
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been proposed. The protocols in [25] use Bloom filters, secret
sharing and oblivious transfer to offer efficient PSI. Later on, [26]
extended [25] by using hash tables and a more efficient oblivious
transfer extension protocol for better efficiency. Recently, [27]
further improved the efficiency of [25] by utilizing permutation-
based hashing. Nevertheless, all these regular PSI protocols are
interactive, which means clients jointly compute the intersection
using locally available datasets. In general, they do not support
outsourcing of the data and the computation to a third party (e.g.
the cloud) without non-trivial modifications. For example in [23],
both parties can send encrypted sets to the cloud and let the cloud
compute the intersection. However, by doing so the cloud learns
the cardinality of the intersection. Also, the parties must re-encrypt
their data if they want to compute another intersection, otherwise
the cloud can learn even more information about the parties’ sets.

On the other hand, a number of PSI protocols that let clients
delegate the computation to a server have been proposed in [15],
[16], [17], [18], [19], [20]. The protocols in [17] allow clients
to outsource their sets to a server by hashing each element and
then adding a random value to it. In this protocol, each time
the computation is delegated, every client needs to download an
encrypted vector whose size is equal to the client’s set size. Also,
each element in the vector has the same size as the elements of
the outsourced set. This is equivalent to the case where every
client first downloads its outsourced set, prepares and uploads
it before the cloud computes the result. Moreover, this protocol
leaks to the server the cardinality of the intersection. Intersection
cardinality is a widely used feature in data mining and could
enable the server to infer a lot of things without knowing the
content of the intersection. Thus from a privacy point of view, it
should not be leaked. Additionally, due to the way the sets are
encoded, if the intersection between the sets of client A and B
is computed, followed by that between the sets of client A and
C , then the server will also find out whether some elements are
common in the sets of client B and C without their permission.
Furthermore, in the protocol, value r is used as a one-time pad
multiple times. However, according to its definition it must be
used only once [28]. This approach is not secure and allows the
cloud to figure out the hash values of each client’s set elements.
So, the protocol is not fully private. In [19], [20] clients also can
delegate the computation to a server. In these protocols, a client
encrypts his data and outsources them to the server. Both protocols
require a trusted third party to initialize the public and private keys
for the clients. Moreover, the schemes in [19], [20] suffer from
the aforementioned problems (i.e. the cloud can learn whether
two sets have common elements without the clients consent and
leaks the intersection cardinality) thus both are not fully private.
The protocol proposed in [16] allows one client, say client A, to
encrypt and outsource its set, and delegate computation to a server.
The server can then engage in a PSI protocol on this client’s
behalf with another client, say client B. But, this delegation is
one-off: if A wants to compute set intersection with C , then
A must encrypt its set with a new key and re-delegate to the
server. In [18] two clients can delegate the PSI computation to
a server. In this protocol, rather than encrypting and outsourcing
their sets, the clients encrypt and outsource bloom filters of their
sets that are then used by the server to privately compute their
intersection. In this case, in order for the clients to get the result of
the intersection, they need to keep a local copy of their sets. So, the
protocol does not support data outsourcing. Another protocol that
delegates computation to a server is proposed in [15]. The protocol

is efficient, and is based on a pseudorandom permutation (PRP)
whose key is generated jointly by the clients at setup. Nonetheless,
the protocol requires the clients to interact with each other before
delegating the computation and also the delegation is one-off.

To sum up, none of the above protocols allows clients to fully
delegate PSI computation to the cloud without the need to either
maintain the sets locally or re-encode and re-upload the sets for
each set intersection computation while protecting the privacy of
both the sets and the intersection. In other words, neither of them
supports secure delegated PSI on outsourced private datasets. As a
result, none of them is particularly suitable for a cloud computing
setting. A comparison of our protocols with existing protocols is
provided in section 7.

3 PRELIMINARIES

3.1 Security Model

We consider a setting in which static semi-honest adversaries are
present. In this setting, the adversary controls one of the parties at
a time and follows the protocol specification exactly. But, it may
try to learn more information about the other party’s input. The
definitions and model are according to [28].

In a delegated PSI protocol, three parties are involved: a cloud
C , and two clients A and B. We assume the cloud does not
collude with A or B. The non-colluding assumption is widely
used in the literature [15], [29], [30]. The three-party protocol π
computes a function that maps the inputs to some outputs. We
define this function as follows: F : Λ× 2U × 2U → Λ×Λ× f∩,
where Λ denotes the empty string, 2U denotes the powerset of
the set universe and f∩ denotes the set intersection function. For
every tuple of inputs Λ, S(A) and S(B) belonging to C,A and B
respectively, the function outputs nothing to C and A, and outputs
f∩(S(A), S(B)) = S(A) ∩ S(B) to B.

In the semi-honest model, a protocol π is secure if whatever
can be computed by a party in the protocol can be obtained from
its input and output only. This is formalized by the simulation
paradigm. We require a party’s view in a protocol execution to
be simulatable given only its input and output. The view of
the party i during an execution of π on input tuple (x, y, z) is
denoted by Viewπi (x, y, z) and equals (w, ri,mi

1, ...,m
i
t) where

w ∈ (x, y, z) is the input of i, ri is the outcome of i’s internal
random coin tosses and mi

j represents the jth message that it
received.

Definition. Let F be a deterministic function as defined above.
We say that the protocol π securely computes F in the pres-
ence of static semi-honest adversaries if there exist probabilistic
polynomial-time algorithms SimC , SimA and SimB that given
the input and output of a party, can simulate a view that is
computationally indistinguishable from the party’s view in the
protocol:

SimC(Λ,Λ)
c≡ ViewπC(Λ, S(A), S(B))

SimA(S(A),Λ)
c≡ ViewπA(Λ, S(A), S(B))

SimB(S(B), f∩(S(A), S(B)))
c≡ ViewπB(Λ, S(A), S(B))

3.2 Homomorphic Encryption

A semantically secure additively homomorphic public key encryp-
tion scheme has the following properties:

1) Given two ciphertexts Epk(a), Epk(b), Epk(a) · Epk(b) =
Epk(a+ b).
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2) Given a ciphertext Epk(a) and a constant b, Epk(a)b =
Epk(a · b).

One such scheme is the Paillier public key cryptosystem [31]. It
works as follows:
Key Generation: Choose two random large primes q1 and q2
according to a given security parameter, and set N = q1 ·q2. Let u
be the Carmichael value of N , i.e. u = lcm(q1−1, q2−1) where
lcm stands for the least common multiple. Choose a random g ∈
Z∗N2 , and ensure that s = (L(gu mod N 2))−1 mod N exists
where L(x) = (x−1)

N . The public key is pk = (N, g) and the
secret key is sk = (u, s).
Encryption: To encrypt a plaintext m ∈ ZN , pick a random value
r ∈ Z∗N , and compute the ciphertext: C = Epk(m) = gm ·
rN mod N 2.
Decryption: To decrypt a ciphertext C , Dsk(C) =
L(Cumod N 2) · s mod N = m.

3.3 Representing Sets by Polynomials
Polynomial representation of sets was introduced in [2] and is
widely used [21], [32]. In this representation, set elements are
represented as elements in a finite field Fp and sets are represented
as polynomials over the field. For the universe of set elements,
U , we define a public finite field Fp that is big enough to
encode all elements in U . For every ui ∈ U , we encode it as
si = ui||G(ui), where G is a cryptographic hash function, so that
given sj ∈ Fp and G’s output size, one can parse sj into a and
b, and check b

?
= G(a). If b = G(a) then we say sj is valid,

otherwise, it is invalid. From now on we will use “set element” or
simply “element” to refer to the encoded form of the element and
“dummy element” to refer to a uniformly random element in Fp.
A set element and a dummy element can be easily distinguished
because the probability that a random element in Fp has the correct
structure and can pass the above check is negligible if G is a
secure cryptographic hash function. A set S can be represented

by a polynomial over Fp: ρ(x) =
|S|∏
i=1

(x − si), where si is a set

element in S.
For two sets S(A) and S(B) represented by polynomials ρ(A)

and ρ(B) respectively, polynomial ρ(A) · ρ(B) represents the set
union, S(A) ∪ S(B), and gcd(ρ(A), ρ(B)) represents the set inter-
section, S(A) ∩ S(B), where gcd stands for the greatest common
divisor. For two degree d polynomials ρ(A) and ρ(B), and two
degree d random polynomials γ(A) and γ(B) whose coefficients
are picked uniformly at random from Fp, it is proven in [21]
that γ(A) · ρ(A) + γ(B) · ρ(B) = µ · gcd(ρ(A), ρ(B)) where µ is a
uniformly random polynomial. This means that if ρ(A) and ρ(B) are
polynomials representing sets S(A) and S(B), then the polynomial
β = γ(A) · ρ(A) + γ(B) · ρ(B) contains only information about
S(A) ∩ S(B) and no information about other elements in S(A)

or S(B). Given polynomial β, to find the intersection, one can
extract the polynomial’s roots 6, and then consider the set of valid
roots as the intersection. Since the computation which we use to
obtain the intersection could introduce random roots, we need to
encode the elements. In particular, the roots of the polynomial
ρC = µ · gcd(ρ(A), ρ(B)) come from both gcd(ρ(A), ρ(B)) and µ.
While the roots of gcd(ρ(A), ρ(B)) are the intersection we want,
the roots of µ are random elements that should be discarded. Since

6. To find the roots of a polynomial over a finite field, we can first factorize
it to get a set of monic polynomials (see [33] for some algorithms), then find
the monic degree-1 polynomials’ roots.

µ is a uniformly random polynomial, its roots should be uniformly
random elements in Fp, i.e. dummy elements. Thus, the encoding
allows us to effectively eliminate the invalid roots.

3.4 Polynomials in Point-value Form
In section 3.3 we showed that a set can be represented as a
polynomial and set intersection can be computed by polynomial
arithmetic. Previous PSI protocols (e.g. [2], [21], [32]) using
polynomial representation of sets, represent a polynomial as a
vector of the polynomial’s coefficients, i.e. they represent a degree

d polynomial ρ(x) =
d∑
i=0

aix
i as a vector #»a = [a0, ..., ad].

This representation, while it allows the protocols to correctly
compute the result, has a major disadvantage. The complexity of
multiplying two polynomials of degree d in this form is O(d2). In
PSI protocols, this leads to significant computational overheads,
especially when one polynomial needs to be encrypted and the
polynomial multiplication has to be done homomorphically. Ho-
momorphic multiplication operations are computationally expen-
sive. Thus, those protocols using the coefficient-based polynomial
representation are not scalable.

We solve this problem by representing the polynomials in
another well-known form, point-value. A degree d polynomial
ρ(x) can be represented as a set of n (n > d) point-value
pairs {(x1, y1), ..., (xn, yn)} such that all xi are distinct and
yi = ρ(xi) for 1 ≤ i ≤ n. If xi are fixed, we can omit them and
represent polynomials as a vector #»y = [y1, ..., yn]. A polynomial
in point-value form can be converted into coefficient form by
polynomial interpolation [34], [35]. Given n pairs of (xi, yi),
we can interpolate a regular coefficient-based polynomial ζ(x)
of degree at most n− 1. To this end, we can use the modified (or
improved) Lagrange formula:

ζ(x) = η(x)
n∑
i=1

ψi
x−xi · yi

where η(x) =
n∏
i=1

(x− xi) and ψi = 1
n∏
i=1
i6=k

(xi−xk)
.

We can add or multiply two polynomials by adding or multi-
plying their corresponding y-coordinates; for two degree d polyno-
mials ρ(A) and ρ(B) represented in point-value form by two vectors
#»y (A) and #»y (B), the polynomial ρ(A) + ρ(B) can be computed as
(y(A)

1 + y(B)
1 , y(A)

2 + y(B)
2 , ..., y(A)

n + y(B)
n ), and the polynomial

ρ(A)·ρ(B) can be computed as (y(A)
1 ·y(B)

1 , y(A)
2 ·y(B)

2 , ..., y(A)
n ·y(B)

n ).
Note, because the product of ρ(A) · ρ(B) is a polynomial of
degree 2d, ρ(A) and ρ(B) must be represented by at least 2d + 1
points to accommodate the result. The key benefit of point-value
representation is that multiplication complexity is reduced toO(d)
and this makes our protocols much more scalable.

3.5 Hash Tables
In our protocols, polynomial factorization is needed in order
for the result recipient to obtain the intersection at the end of
the computation. The complexity of polynomial factorization is
quadratic in the degree of the polynomial being factorized. To
improve performance, in EO-PSI we use hash tables to divide
a large set into small subsets and represent each subset as a
polynomial. This is a technique that has been used in several
regular PSI protocols, e.g. [2], [27]. Intuitively, for a c-element
set that is represented by a degree-c polynomial, the factorization
cost is O(c2). If we break down the set into h roughly equal-sized
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subsets, then we will need to factor h polynomials of degree c
h .

So, the total cost is reduced to O( c
2

h ).
In general, hash tables in PSI protocols can be used as follows.

First, the public parameters including a random hash function H,
the number of bins in the hash table and the bin’s maximum size
are picked. The number of bins in the hash table should be set such
that given the maximum set cardinality, with a high probability
each bin receives at most a specific number of elements (we will
explain shortly how this can be done).

For the parties to compute the set intersection, each of them
maps each set element si to the table by computing an address
j = H(si), using the hash function whose output is modeled as a
uniform random number. Then, it inserts si into the corresponding
bin HTj . Because the hash function is deterministic if an element is
in the intersection, both parties map it to the same bin. Therefore,
a large set of elements can be broken down into a collection of
smaller sets (the bins) and a PSI protocol can operate on each bin
separately.

As mentioned above, we need to set parameters appropriately
to ensure that the number of elements in each bin does not exceed a
predefined upper bound. Given the maximum number of elements
c and the bin’s maximum size d, we can determine the number
of bins by analyzing hash tables under the balls into bins model
which has been extensively studied in the literature [36], [37].

Theorem 1. (Upper Tail in Chernoff Bounds) Let Xi be a
random variable defined as Xi =

c∑
i=1

Yi, where Pr[Yi = 1] = pi,

Pr[Yi = 0] = 1 − pi, and all Yi are independent. Let µ be the

expectation E[Xi] =
h∑
i=1

pi. Then:

Pr[Xi > d = (1 + σ) · µ] <
( eσ

(1 + σ)(1+σ)

)µ
,∀σ > 0 (1)

Note that in the balls and bins model the expectation is µ = c
h .

Inequality 1 provides a bound for the probability that bin i is
overloaded. Since there are h bins, the probability that at least one
of them is overloaded is bounded by the union bound.

Pr[∃i, 1 ≤ i ≤ h : Xi > d] ≤
h∑
i=1

Pr[Xi > d]

≤ h ·
( eσ

(1 + σ)(1+σ)

) c
h

(2)

Thus, when the probability and bin’s maximum load are fixed,
for any c number of elements (as the maximal number of elements
that may be inserted into the hash table) we can set the number
of bins using inequality 2. In Section 8, some concrete parameters
are calculated for our experiments and are shown in Table 3.

3.6 Notation
We summarize our notation in Table 1.

4 O-PSI: OUR FIRST PROTOCOL

In this section, we present O-PSI our first protocol for delegated
private set intersection on outsourced private datasets.

4.1 An Overview of O-PSI
The interaction between parties in O-PSI is depicted in Fig. 1.
At a high level, the protocol works as follows. First, each client

TABLE 1
Table of notation.

Notation Description

G
en

er
ic

U The universe of set elements.
#»v Vector v.

| #»v | = c Vector of size c.

Fp Finite field of order p.

a||b a is concatenated with b.

(vi)
−1 and −vi The multiplicative and additive inverse of value vi

respectively.

e(I) Value e belongs to client I .

PRF(.) Pseudorandom function PRF: {0, 1}m × {0, 1}l →
Fp.

l, m The key bit-length (i.e. security parameter) and message
bit-length respectively.

#»o (I) A vector containing client I’s outsourced blinded data.

τ(I)(x) The polynomial representing client I’s set.

ω(I)(x) (Pseudo)random polynomial for client I .

In
O

-P
SI

#»e (B) The vector of encrypted pseudorandom values sent by
client B to A.

#»e (A) The vector of encrypted pseudorandom values sent by
client A to the cloud.

#»
t Vector of blinded y-coordinates (i.e. the result) sent by

the cloud to client B.

EpkI (vi) Value vi is encrypted using client I public key.

DskI (vi) Value vi is decrypted using client I secret key.
In

E
O

-P
SI

tk Temporary key.

mk(I) Master key for client I .
#»
t i The vector of blinded y-coordinates (i.e. the result) sent

by the cloud to client B.

H(.) Hash function whose output ranges over [1, h].

h Hash table size or the number of bins.

HT
(I)
j The jth bin in hash table HT(I).

s
(I)
i → HT

(I)
j element si is mapped to bin HT

(I)
j .

independently prepares its dataset and then stores it as a blinded
vector in the cloud. Since the vector is blinded the cloud cannot
figure out the client’s set. Later on, when client B gets interested
in the intersection of its own outsourced dataset and client A’s
outsourced dataset, it obtains client A’s permission by sending
a message to it. If A agrees, then they jointly compute a set
of encrypted values and send them to the cloud. The encrypted
values are used by the cloud to “switch” the blinding factors ofA’s
dataset, which then allows the set intersection to be computed cor-
rectly. After that, the cloud uses clientA’s message and the clients’
outsourced datasets to generate an encrypted polynomial encoding
the intersection; and then it sends the encrypted polynomial to
client B. At the end of the protocol, when client B receives the
polynomial, it decrypts it and extracts the polynomial’s roots that
are the set intersection. The protocol is described below. We will
explain the rationale behind the protocol design after the protocol
description.

4.2 O-PSI Protocol
Without loss of generality, first, we consider the two client case,
where client A, client B and a cloud engage in the protocol.

a. Cloud-Side Setup. The cloud picks a public parameter c that
is an upper bound of the set cardinality. The cloud constructs
a finite field Fp, where p is a large prime number. It also
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Fig. 1. The left-hand side figure: party interaction at data outsourcing
phase in O-PSI; the right-hand side figure: party interaction at the
computation delegation phase in O-PSI.

constructs a vector #»x containing n = 2c+1 distinct non-zero
xi values randomly picked from Fp. It picks a pseudorandom
function PRF: {0, 1}m × {0, 1}l → Fp, which takes an l-
bit key and m-bit message, and maps the message to an
element in the field pseudorandomly. The cloud publishes
the description of the field, the value n, the vector #»x and the
pseudorandom function PRF.

b. Client-Side Setup and Data Outsourcing. Let client I ∈
{A,B} have a set S(I), where S(I) ⊂ U for some set
universe U and |S(I)| ≤ c. Each client I performs the
following:

1) Generates a Paillier key pair (pkI , skI) (see section 3.2)
and publishes the public key. It also chooses a random pri-
vate key k(I) for the pseudorandom function PRF. All the
keys are generated according to a given security parameter.

2) Constructs a polynomial τ (I)(x) =
|S(I)|∏
i=1

(x − s(I)i ) that

represents its set S(I). Represent τ (I)(x) as point-value
form, by evaluating it at every element xi in #»x . This yields
a vector containing values τ (I)(xi), 1 ≤ i ≤ n.

3) Blinds every value τ (I)(xi). To do that, it generates a
set of pseudorandom values (or blinding factors) z(I)

i =
PRF(k(I), i); next, computes o(I)

i as follows:

1 ≤ i ≤ n: o(I)
i = τ (I)(xi) · z(I)

i

At the end of this step, the set elements are represented as
vector #»o (I) = [o(I)

1 , ..., o(I)
n ].

4) Sends vector #»o (I) to the cloud.
c. Set Intersection: Computation Delegation. This phase

starts when client B becomes interested in the intersection
of its set and client A’s set.

1) Client B sends a message to client A. The message
contains client B’s ID, ID(B), and a vector #»e (B), whose
elements are computed as follows:

∀i, 1 ≤ i ≤ n: e(B)
i = EpkB (z(B)

i )

where z(B)
i = PRF(k(B), i) are the values used by client B

to blind its polynomial in step b.3 above.
2) Given client B’s message, client A computes vector #»e (A).
∀i, 1 ≤ i ≤ n:

e(A)
i = (e(B)

i )(z
(A)
i )−1

= EpkB (z(B)
i · (z(A)

i )−1)

where z(I)
i = PRF(k(I), i) for I ∈ {A,B} are the values

from step b.3.
3) Client A sends #»e (A), ID(A), ID(B), and Compute message

to the cloud.
d. Set Intersection: Cloud-Side Result Computation.

1) After receiving the Compute message from A, the cloud
picks two degree c random polynomials ω(A)(x) and
ω(B)(x) (whose coefficients are chosen from Fp).

2) The cloud fetches the clients outsourced datasets #»o (A) and
#»o (B) and then computes vector

#»
t as below.

∀i, 1 ≤ i ≤ n:

ti = (e(A)
i )o

(A)
i ·ω

(A)(xi) · EpkB (ω(B)(xi) · o(B)
i )

= EpkB (z(B)
i ·(ω(A)(xi)·τ (A)(xi)+ω

(B)(xi)·τ (B)(xi)))

3) The cloud sends
#»
t to client B.

e. Set Intersection: Client-Side Result Retrieval
1) Client B decrypts the elements in

#»
t and then removes

the blinding factors. This yields vector #»g computed as
follows:
1 ≤ i ≤ n:

gi = DskB (ti) · (z(B)
i )−1 = z(B)

i · (ω(A)(xi) · τ (A)(xi) +
ω(B)(xi) · τ (B)(xi)) · (z(B)

i )−1 = ω(A)(xi) · τ (A)(xi) +
ω(B)(xi) · τ (B)(xi)

2) It then interpolates the polynomial φ(x) using the point-
value pairs (xi, gi) and considers the valid roots of φ(x)
as the elements in the set intersection (see section 3.3).

Remark 1: In step a, the cloud publishes a vector #»x that has 2c+1
elements, because the polynomial φ(x) in step e.2 is of degree 2c
and at least 2c+1 points are needed to interpolate it. Note that the
elements in #»x are picked at random from Fp so the probability of
xi being a root of a client’s polynomial is negligible.
Remark 2: In step b.3, if the client does not blind the evaluated
polynomial and stores the values τ (I)(xi) directly on the cloud,
then the cloud could use n pairs of (xi, τ

(I)(xi)) to interpolate
the client’s polynomial. As a result, the client’s set would be
revealed to the cloud. Whereas, when they are blinded the cloud
cannot learn anything about the client’s set unless it knows the
pseudorandom function key used by the client. The client blinds
the values by multiplication; while multiplication cannot blind
τ (I)(xi) = 0. This is why we require the probability of xi ∈ #»x
being a root of a client’s polynomial to be negligible.
Remark 3: The data stored in the cloud are independently blinded
by its owner. Also, to compute the set intersection correctly, the
blinding factors (z(I)

i in the protocol) must be eliminated at the
end of the protocol. In step c.2, client A and B jointly compute
the vector #»e (A) that allows the cloud to obliviously “switch” A’s
blinding factors to B’s. Accordingly, in step d.2, the cloud uses
#»e (A) to eliminate z(A)

i and replace it with z(B)
i . The blinding

factors z(B)
i , later on in step e.1, can be eliminated by client B.

What is more, since the values in #»e (A) are encrypted and only
client B knows the secret key, the cloud learns nothing in this
process.
Remark 4: The client’s original blinded dataset remains un-
changed in the cloud. In fact, in step d.2, the cloud multiplies
a copy of the client’s blinded dataset by the vector of ω(I)(xi).
Remark 5: The only information that the cloud learns about the
clients’ datasets is the upper bound on the datasets cardinality
(i.e. value c) that was initially set by itself. Thus, the cloud
learns nothing about the exact number of the set elements and
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the intersection cardinality.

4.3 Multiple Clients O-PSI
With minor modifications, two-client O-PSI can be turned into m-
client O-PSI, where m > 2. Below we outline how this can be
done. In this case, the client interested in the intersection, client
B, sends the same request (see step c.1 of the protocol) to all other
clients, Az, where 1 ≤ z ≤ y and y = m − 1. The protocol for
each client Az remains unchanged. For each client Az, the cloud
carries out step d.2 and it computes the result vector

#»
t as follows:

∀i, 1 ≤ i ≤ n:
ti = EpkB (ω(B)(xi) · o(B)

i ) ·
y∏
z=1

(e(Az)i )o
(Az)
i ·ω(Az)(xi)

= EpkB (z(B)
i · (ω(B)(xi) · τ (B)(xi) +

y∑
z=1

ω(Az)(xi) · τ (Az)(xi)))

Then, the cloud sends
#»
t to client B. Note that in this case,

even if clientB colludes with y−1 clients, it could not infer the set
elements of the non-colluding client, as the random polynomials
ω(Az) and ω(B) are picked by the cloud, and are unknown to the
clients.

5 A MORE EFFICIENT PROTOCOL, EO-PSI: OUR
SECOND PROTOCOL

In this section, we introduce EO-PSI that preserves all O-PSI’s
desirable properties and is more efficient. EO-PSI improves O-
PSI from two perspectives. First, unlike O-PSI, EO-PSI does not
use any public key encryption that is computationally expensive.
In O-PSI, the public key encryption is mainly used to prevent the
cloud from eventually learning any information about the blinding
factors (and set elements) during the cloud-side “switching” of
the blinding factors, especially when the computation is delegated
multiple times. Recall in O-PSI given the vector #»e the cloud can
“switch” one client’s blinding factors to another’s. In contrast, in
EO-PSI no such “switching” is required. Therefore, no public key
encryption is needed. In order to achieve this, we slightly change
the way each client blinds its polynomial. In EO-PSI, instead of
multiplying value τ(xi) by a pseudorandom value, the client sums
the value and the pseudorandom value. Moreover, the interaction
between the clients is changed, in the sense that client A sends
a message to both the cloud and client B when it authorizes the
computation.

Second, EO-PSI allows each client to break down its original
polynomial into smaller degree polynomials. This allows the result
recipient to factorize a set of smaller degree polynomials rather
than one of very large degree. As a result, it can find the roots of
the polynomials (i.e. the set intersection) faster than in O-PSI. To
achieve this, the protocol lets each client insert its elements into
the bins of a (fixed-size) hash table.

5.1 An Overview of EO-PSI
The interaction between parties in EO-PSI is depicted in Fig. 2.
What follows is a high-level description of the protocol. First,
each client inserts its set elements into the hash table. Then, it
represents the set of elements in each bin of the hash table as a
blinded point-value polynomial and sends the polynomials to the
cloud. When client B becomes interested in the intersection of
its own set and client A’s set, it obtains the client’s permission
by sending a message to it. If client A agrees, it generates a set
of vectors and sends them to client B. The vectors help client
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Fig. 2. The left-hand side figure: party interaction at data outsourcing
phase in EO-PSI; the right-hand side figure: party interaction at the
computation delegation phase in EO-PSI.

B to unblind the cloud’s response. Client A also sends a key for
a pseudorandom function to the cloud. The key is generated on
the fly and is used only in this execution of the protocol. The
cloud uses the key and the outsourced datasets to compute a set
of blinded polynomials, and sends them to client B. Given these
polynomials and client A’s message, client B unblinds them and
retrieves the intersection of the sets.

5.2 EO-PSI Protocol
Similarly, here first we consider the two client case, where client
A, client B and a cloud engage in the protocol.

a. Cloud-Side Setup. The cloud sets the parameters for a hash
table. It sets c as the upper bound of the set cardinality, d as
the maximum load that a bin in the hash table can have, and
h as the total number of bins in the hash table. Moreover,
it chooses a cryptographic hash function, H. Then, the cloud
constructs a finite field Fp, where p is a large prime number.
It also constructs a vector #»x containing n = 2d+ 1 distinct
non-zero xi values randomly picked from Fp. It picks a
pseudorandom function PRF : {0, 1}m × {0, 1}l → Fp,
which takes an l-bit key and m-bit message, and maps the
message to an element in the field pseudo-randomly. The
cloud publishes the hash table parameters, the description
of the field, the value n, the vector #»x , the pseudorandom
function PRF along with the hash function H.

b. Client-Side Setup and Data Outsourcing. Let client I ∈
{A,B} have a set S(I), where S(I) ⊂ U and |S(I)| ≤ c.
Each client I performs the following:

1) Given the hash table parameters, generates a hash table and
inserts its set elements into it, as below.

∀s(I)i ∈ S(I): H(s(I)i ) = j, then s(I)i → HT(I)
j

where 1 ≤ j ≤ h.
2) Assigns a key (for the pseudorandom function) to each

bin in the hash table by picking a master key mk(I), and
generating h pseudorandom values (or keys):

∀j, 1 ≤ j ≤ h: k(I)
j = PRF(mk(I), j).

3) For every bin HT(I)
j , if it has less than d set elements, pads

it with dummy (or random) elements, rj,i, to d elements.
Then, encodes the bin elements as below.
a) Constructs a polynomial representing the elements in

the bin.
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τ (I)
j (x) =

d∏
i=1

(x− e(I)i )

where e(I)i ∈ HT(I)
j , e(I)i = s(I)i or e(I)i = rj,i.

b) Represents τ (I)
j (x) in point-value form, by evaluating

it at every element xi ∈ #»x . This yields a vector
containing values τ (I)

j (xi), 1 ≤ i ≤ n.
c) Blinds every value τ (I)

j (xi). To do so first generates
a pseudorandom value z(I)

j,i = PRF(k(I)
j , i), where key

k(I)
j was generated in step b.2. After that, computes
o(I)
j,i as follows.
∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

o(I)
j,i = τ (I)

j (xi) + z(I)
j,i

At the end of this step, the elements in bin HTj are
represented as the vector #»o (I)

j = [o(I)
j,1 , ..., o

(I)
j,n].

4) Sends #»o (I) = [ #»o (I)
1 , ..., #»o (I)

h ] to the cloud.
c. Set Intersection: Computation Delegation. This phase

starts when client B wants the intersection of its set and
client A’s set.

1) Client B sends mk(B) and its id, ID(B), to client A.
2) Givenmk(B) andmk(A) clientA regenerates k(I)

j (see step
b.2) where 1 ≤ j ≤ h and ∀I, I ∈ {A,B}.

3) Client A assigns three fresh keys to each bin HTj . To do
that, first, it picks a temporary key tk and then carries out
the following.
a) It uses the key, tk, to generate three pseudorandom

values kt.

∀t, 1 ≤ t ≤ 3: kt = PRF(tk, t).

b) It uses each kt to compute h pseudorandom values.

∀j, 1 ≤ j ≤ h: k1,j = PRF(k1, j), k2,j = PRF(k2, j),
k3,j = PRF(k3, j).

4) For each bin HTj client A uses key k1,j to generate a set
of pseudorandom values aj,i.

∀i, 1 ≤ i ≤ n: aj,i = PRF(k1,j, i).

Also, it uses key k2,j and k3,j to generate two degree d
pseudorandom polynomials ω(A)

j (x) and ω(B)
j (x) for that

bin.
5) For each bin HTj client A regenerates the pseudorandom

values z(A)
j,i = PRF(k(A)

j , i) and z(B)
j,i = PRF(k(B)

j , i) using
the keys it derived in step c.2. Then, it computes vector #»qj
as follows. ∀i, 1 ≤ i ≤ n:

qj,i = z(A)
j,i · ω(A)

j (xi) + z(B)
j,i · ω(B)

j (xi) + aj,i

Vectors #»qj allow client B to remove the blinding factors
from the cloud’s response without learning the pseudoran-
dom polynomials.

6) Client A sends #»q = [ #»q1, ...,
# »qh] to client B. Also, client

A sends the key tk (generated in step c.3), ID(A), ID(B),
and Compute message to the cloud.

d. Set Intersection: Cloud-Side Result Computation.
1) Given the key tk, the cloud derives the three keys k1,j , k2,j

and k3,j for each bin HTj , where 1 ≤ j ≤ h (see steps c.3a
and c.3b)

2) Using the keys generated in the previous step, the cloud

regenerates the set of pseudorandom values aj,i (∀i, 1 ≤
i ≤ n) and the two pseudorandom polynomials ω(A)

j (x)
and ω(B)

j (x) for each bin HTj , where 1 ≤ j ≤ h (see step
c.4).

3) The cloud computes the result as follows. First, it fetches
the clients’ outsourced datasets #»o (A)

j and #»o (B)
j in each bin

HTj . Next, it computes the result vector
#»
tj for that bin as

below.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:
tj,i = o(A)

j,i · ω(A)
j (xi) + o(B)

j,i · ω(B)
j (xi) + aj,i

4) The cloud sends
#»
t = [

#»
t1, ...,

#»
th] to client B.

e. Set Intersection: Client-Side Result Retrieval
1) Client B removes the blinding factors from each vector

#»
tj (∀j, 1 ≤ j ≤ h) using the corresponding vector #»qj
(provided by client A in step c.6). The result is the vector
#»gj computed as follows.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:
gj,i = tj,i−qj,i = ω(A)

j (xi)·τ (A)
j (xi)+ω(B)

j (xi)·τ (B)
j (xi)

2) Given each vector #»gj and #»x it interpolates the polynomial
φj(x) (∀j, 1 ≤ j ≤ h).

3) It extracts the roots of each polynomial. It considers the
union of the valid roots as the intersection of the sets.

Remark 1: Client I can always update (or replace) the blinding
factors of its outsourced dataset in the cloud without leaking any
information to it. To do so, it picks a fresh master key mk′(I), and
derives h keys k′(I)j from the master key:

∀j, 1 ≤ j ≤ h : k′(I)j = PRF(mk′(I), j)

Next, it uses each key k′(I)j to generate n pseudorandom values
z′(I)j,i for each bin:

∀j, 1 ≤ j ≤ h,∀i, 1 ≤ i ≤ n : z′(I)j,i = PRF(k′(I)j , i)

Also, it uses its old master key to regenerate the blinding
factors z(I)

j,i used to blind the outsourced dataset. Then, for every
bin it computes the following values:

∀j, 1 ≤ j ≤ h,∀i, 1 ≤ i ≤ n : u(I)
j,i = −z(I)

j,i + z′(I)j,i

It sends all u(I)
j,i to the cloud and asks it to sum them with the

corresponding blinded values o(I)
j,i = τ (I)

j (xi) + z(I)
j,i . After the

cloud follows its instruction it would get the following blinded
values:

∀j, 1 ≤ j ≤ h,∀i, 1 ≤ i ≤ n :

o′(I)j,i = o(I)
j,i + u(I)

j,i = τ (I)
j (xi) + z′(I)j,i

Now, the client can discard its old master key and only needs
to keep mk′(I) locally.
Remark 2: If the number of elements mapped to a bin exceed
its capacity, the polynomial cannot be interpolated correctly after
the computation. To avoid this, the server sets the parameters
including the number of bins, the maximum load of each bin and
the maximum set cardinality in such a way that the probability of
any bin exceeding its capacity is negligible. The parameters can
be derived by the cloud using inequality 2 (provided in section 3.5
with example values shown in Table 3).
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Remark 3: In EO-PSI, the client needs to find the roots of h
polynomials of degree 2d, where d is a fixed value picked by
the cloud and it is much smaller than the maximum number of
elements, c. In contrast, in O-PSI the client receives only one
polynomial of degree 2c. Clearly, finding roots of h polynomials
of small degree 2d is much faster than finding the roots of
one polynomial of very large degree 2c and our performance
evaluation in section 8 also supports this (see Fig. 4).
Remark 4: In both EO-PSI and O-PSI, the cloud-side setup is
performed only once, when the cloud comes online. Afterward,
it does not need to do any computation in this step. Furthermore,
none of our protocols requires the participation of a trusted third
party.
Remark 5: Bloom filters can be used in PSI Protocols to improve
their efficiency [25]. A Bloom filter encodes a set and allows
membership queries. In traditional PSI, the parties have a local
copy of their own sets, so they can query the filters using the sets
to get the intersection. In delegated PSI, clients outsource their
data and do not keep a local copy. A delegated PSI protocol based
on Bloom filters would require clients to enumerate the universe
of the set elements in order to get the intersection. For this reason,
we do not use Bloom filters in our protocol.
Remark 6: Public key cryptography preserves certain algebraic
properties, therefore protocols based on it can be simpler and more
intuitive than those based on symmetric key cryptography. For this
reason, we first design the O-PSI protocol to show feasibility, then
the EO-PSI protocol to improve efficiency.

5.3 Multiple Clients EO-PSI
With minor adjustments, the protocol can support m > 2 number
of clients. Here, we denote the result recipient by client B and the
other clients by Az, ∀z, 1 ≤ z ≤ y and y = m− 1.

Similar to the two clients case, here each client Az sends to
the cloud a temporary key tk(Az) that lets the cloud generate
for each bin HTj a set of pseudorandom values a(Az)

j,i and two
pseudorandom polynomials ω(Az)

j (x) and ω(Bz)
j (x). However, as

it is shown below, the cloud-side computation in step d.3 is slightly
changed. ∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

tj,i = o(B)
j,i · ω(B)

j (xi) +
y∑
z=1

a(Az)
j,i +

y∑
z=1

o(Az)
j,i · ω(Az)

j (xi)

where ω(B)
j (x) =

y∑
z=1

ω(Bz)
j (x)

Note, in the above step the cloud first adds all the polynomials
ω(Bz)
j (x) together, then it evaluates the result polynomial at every

element in #»x , and next multiplies the result by client B’s blinded
values for that bin (i.e. bin HTj).

Consequently, clientB in step e.1 removes the blinding factors
from vector

#»
tj as follows:

gj,i = tj,i −
y∑
z=1

q(Az)
j,i

= ω(B)
j (xi) · τ (B)

j (xi) +
y∑
z=1

ω(Az)
j (xi) · τ (Az)

j (xi)

In multiple clients EO-PSI, even if clientB colludes with y−1
clients, it cannot learn any information about the non-colluding
client’s set elements. The reason is that, as it is shown in [21],
the polynomial ω(B)

j (x) is always a uniformly random polynomial
even if only one of the polynomials ω(Bz)

j (x) is uniformly random
and unknown to client B.
Remark 1: In multiple client EO-PSI, the communication and
computation complexities for those clients who authorize the com-
putation (i.e. clients Az) are independent of the number of clients

participating in the protocol. In other words, the computation and
communication complexities for client A in the two client case
are similar to client Aj’s in the multiple clients case. Note that the
same holds for multiple client O-PSI.
Remark 2: In multiple client EO-PSI, each client Aj indepen-
dently authorizes the computation, without the need to interact
with the other authorizing clients. The same is true for multiple
client O-PSI.

6 PROOF OF SECURITY

Now we present the proof of EO-PSI security in the semi-honest
model. The security proof of O-PSI can be found in [1]. O-
PSI and EO-PSI are both proved using the ideal-real paradigm.
However, there are some differences between the proofs: (1) the
security relies on different assumptions, in O-PSI it relies on
the assumption of the existence of a semantically secure additive
homomorphic encryption scheme, while in EO-PSI it relies on the
assumption of the existence of a secure pseudorandom function;
(2) in O-PSI the clients’ blinded input sets are represented as a
single polynomial, while in EO-PSI, the sets are split into bins
and each bin is represented as a polynomial.

Theorem 2. If PRF is a pseudorandom function, then EO-PSI
protocol is secure in the presence of a semi-honest adversary.

Proof. We will prove the theorem by considering, in turn, the
case where each of the parties has been corrupted. In each case,
we invoke a simulator with the corresponding party’s input and
output. Our focus is in the case where party A wants to engage in
the computation of the intersection. If party A does not want to
proceed with the protocol, the views can be simulated in the same
way up to the point where the execution stops.
Case 1: Corrupted Cloud. In this case, we show that we can
construct a simulator SimC that can produce a computationally
indistinguishable view. In the real execution, the cloud’s view,
ViewπC(Λ, S(A), S(B)), is as follows:

{Λ, rC , #»o (A), #»o (B), tk, ID(A), ID(B),Compute,Λ}

In the above view, rC is the outcome of internal random coins
of the cloud, #»o (A), #»o (B) are the hash tables each containing the
blinded set representations of A’s and B’s sets, and tk is an l-bit
random key used in the protocol to generate the pseudorandom
polynomials and the blinding factors to mask the result generated
by the cloud.

To simulate this view, SimC does the following: it creates an
empty view and appends to it Λ and uniformly at random chosen
coins r′C . It uses the public parameters and the hash function to
construct two hash tables HT′(A) and HT′(B). Then, it fills each
bin of the hash tables with n uniformly random values picked
from the same field Fp; so each bin HT′(I)j (∀I, I ∈ {A,B})
contains the vector #»o ′(I)j of n random values. It also chooses
a key tk′. Afterward, it appends #»o ′(A) = [ #»o ′(A)

1 , ..., #»o ′(A)
h ],

#»o ′(B) = [ #»o ′(B)
1 , ..., #»o ′(B)

h ] and tk′ to the view. Finally, the
simulator appends ID(A), ID(B),Compute and Λ, to the view and
outputs the view.

We argue that the simulated view is computationally indistin-
guishable from the real view. In both views, the input parts are
identical (i.e. both are Λ), the random coins are both uniformly
random, and so they are indistinguishable. In the real model,
the elements in #»o (I) ( ∀I, I ∈ {A,B}) are blinded with the
outputs of a pseudorandom function. Also, the elements in #»o ′(I)
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are random elements of the field. As the blinded values and
random value are indistinguishable, the vectors #»o (I)

i and #»o ′(I)i

are indistinguishable; thus, the vectors #»o (I) and #»o ′(I) are also
indistinguishable. As the keys tk and tk′ are picked uniformly at
random, they are computationally indistinguishable as well. What
is more, ID(A), ID(B) and Compute in both models are identical.
Moreover, the output parts in both views are identical (i.e. both
are Λ). So, we conclude that the views are indistinguishable.
Case 2: Corrupted client A. In the real execution, the A’s view
is as follows:

ViewπA(Λ, S(A), S(B)) = {S(A), rA,mk
(B), ID(B),Λ}

The simulator SimA does the following: it creates an empty
view. It receives the party’s input S(A) and appends it to the view.
Then, it inserts uniformly at random chosen coins r′A to it. Next,
it picks an l-bit key mk′(B) uniformly at random and appends it to
the view. After that, it inserts ID(B) and Λ into the view. In both
models S(A) is identical. Moreover, both rA and r′A are picked
uniformly at random so they are indistinguishable. Since both
keys mk(B) and mk′(B) are chosen uniformly at random they are
computationally indistinguishable, too. Moreover, ID(B) and Λ are
identical in both models. So, the two views are indistinguishable.
Case 3: Corrupted client B. In the real execution, client B’s
view is as follows:

ViewπB(Λ, S(A), S(B)) = {S(B), rB,
#»g , #»q , f∩(S(A), S(B))}

The simulator SimB receives the party’s input (S(B)) and
output (f∩(S(A), S(B))), and does the following:

1) Creates an empty view, then appends S(B) and uniformly at
random chosen coins r′B to it.

2) Picks two sets S′(A) and S′(B) such that S′(A) ∩ S′(B) =
f∩(S(A), S(B)) and |S′(A)|, |S′(B)| ≤ c.

3) Constructs the hash tables HT′(A) and HT′(B) using the public
parameters. Next, maps the elements in S′(A) and S′(B) to
the bins of HT′(A) and HT′(B), respectively. ∀I, I ∈ {A,B}
and ∀s′(I)i ∈ S′(I): H(s′(I)i ) = j, then s′(I)i → HT′(I)j , where
1 ≤ j ≤ h.

4) For each bin constructs a polynomial representing its ele-
ments. If a bin contains less that d elements first it is padded
with dummy values, r′(I)j,i , to d elements. ∀I, I ∈ {A,B} and

∀j, 1 ≤ j ≤ h: τ ′(I)j (x) =
d∏
i=1

(x−e(I)i ), where e(I)i ∈ HT′(I)j ,

e(I)i = s′(I)i or e(I)i = r′(I)j,i .
5) Assigns a random polynomial ω′(I)j of degree d to each bin

HT′(I)j (∀j, 1 ≤ j ≤ h) of the hash table HT′(I) (∀I, I ∈
{A,B}).

6) Constructs the vectors #»g ′j whose elements are computed as
follows. ∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n:

g′j,i = τ ′(A)
j (xi) · ω′(A)

j (xi) + τ ′(B)
j (xi) · ω′(B)

j (xi)

where τ ′(I)j (x) is the polynomial representing the set of
elements contained in bin HT(I)

j .
7) Picks a key mk′ and derives h keys, k′j , from it as below.

∀j, 1 ≤ j ≤ h : k′j = PRF(mk′, j)

8) Uses each key k′j to generate #»q ′j whose elements are com-
puted as follows.

∀j, 1 ≤ j ≤ h and ∀i, 1 ≤ i ≤ n: q′j,i = PRF(k′j, i)

9) Adds #»g ′ = [ #»g ′1, ...,
#»g ′h] and #»q ′ = [ #»q ′1, ...,

#»q ′h] to the view.
10) Finally, inserts, f∩(S(A), S(B)) to the view.

Now we show that the two views are computationally indis-
tinguishable. In both models S(B) is identical. As rB and r′B are
chosen uniformly at random, they are indistinguishable.

In the real model, the elements in #»q j are blinded by the
outputs of a pseudorandom function. So the blinded elements are
uniformly random values. On the other hand, in the ideal model
the elements in #»q ′j are the outputs of a pseudorandom function.
Hence, the elements in both vectors #»q and #»q ′ are computationally
indistinguishable.

Furthermore, in the real model, given each unblinded vec-
tor #»g j , the adversary interpolates a polynomial of the form
φ(x)j = ω(A)

j (x) · τ (A)
j (x) + ω(B)

j (x) · τ (B)
j (x) = µj ·

gcd(τ (A)
j (x), τ (B)

j (x)), where µj is a uniformly random poly-
nomial and gcd(τ (A)

j (x), τ (B)
j (x)) represents the intersection of

the set elements in the corresponding bin. Similarly, in the ideal
model, each polynomial φ′j(x) interpolated from vector #»g ′j has
the form φ′j(x) = ω′(A)

j (x) · τ ′(A)
j (x) + ω′(B)

j (x) · τ ′(B)
j (x) =

µ′j · gcd(τ ′(A)
j (x), τ ′(B)

j (x)), where µ′j is a uniformly random
polynomial. As mentioned in section 3.3, it has been shown in
[21] that the polynomials φj(x) and φ′j(x) (for each bin) only
contain information about the intersections of the corresponding
sets and have the same distribution in both models. Finally, in both
views the output part (i.e. f∩(S(A), S(B))) is identical. Hence, the
two views are computationally indistinguishable.

Combining the above, we conclude the protocol is secure and
complete our proof.

Thus, both the O-PSI and EO-PSI protocols are secure in the
semi-honest model and we have proven their security using the
real-ideal paradigm. In the proof, we used standard assumptions
and did not rely on non-standard ones (e.g. random oracle model).

7 COMPARISON

We first evaluate EO-PSI and O-PSI by comparing their properties
to those provided by other protocols that delegate PSI compu-
tation to a cloud. We also compare these protocols in terms of
communication and computation complexity. Table 2 summarizes
the results.
Properties. When PSI computation is delegated to a server who is
not fully trusted, protecting the privacy of the computation input
and output from the server is crucial. However, as discussed in
section 2 the protocols in [17], [19], [20] do not fully preserve data
privacy and leak some information to the cloud server. Protocols
like the size-hiding variation of [15], those in [16], [18], O-PSI
and EO-PSI offer this protection.

Another desirable security property is that PSI computation is
only possible with the explicit authorization from all the clients.
In [19], the server can use the outsourced data to compute PSI
without client permission. The server cannot decrypt the result but
can learn information about the intersection e.g. the size. In [17],
the protocol includes an authorization step. However, this step is
not very effective. If the intersection between the sets of client A
and B is computed, followed by that between the sets of client A
and C , then the server will also find out whether some elements
are common in the sets of clientB andC without their permission.

In O-PSI, EO-PSI, [17], [19], [20], datasets are outsourced
and stored on the cloud server. The server then uses the stored
encrypted datasets for computation. This is not the case for
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TABLE 2
Comparison of different delegated PSI protocols. Set cardinality and intersection cardinality are denoted by c and k, respectively.

Property EO-PSI O-PSI [15] [16] [17] [18] [19] [20]
Private against the Cloud X X X X × X × ×

PSI Computation Authorization X X X X × X × X

Data Storage Outsourcing X X × × X × X X

Non-interactive Client-side Setup X X × × X X X X

Many Private Set Intersections without Re-preparation X X × × × × × ×
Multiple Clients X X X X X × X X

Communication Complexity O(c) O(c) O(c) O(c2) O(c) O(c2) O(k) O(k)

Computation Complexity O(c) O(c2) O(c) O(c2) O(c2) O(c2) O(c) O(c)

protocols in [15], [16], [18]. Those protocols are for one-off
computation and the clients have to upload the encrypted datasets
to the server before each computation.

The protocols in [15], [16] require clients to interact with each
other at setup. In [15] clients need to jointly compute the key
for the pseudorandom permutation used to encode the datasets,
while in [16] they need to jointly compute the parameters used
to encrypt their datasets. In contrast to these protocols, in [17],
[18], [19], [20], O-PSI and EO-PSI the clients can independently
prepare and outsource their private datasets. This is particularly
desirable in the context of cloud computing as organizations and
individuals should be able to outsource their datasets at different
points in time and without prior knowledge of those they will
engage in computation in the future. Among the five protocols
that support non-interactive client setup, the protocols in [19],
[20] require additionally a trusted third party to initialize some
protocol parameters on behalf of the clients, whereas the rest of
the protocols do not need such assistance.

Note that O-PSI and EO-PSI are the only PSI protocols that
allow clients to delegate the computation an unlimited number of
times without the need to prepare their datasets for each compu-
tation. Also, the computation does not reveal any information to
the cloud even if it is delegated multiple times. This is vital in the
case where outsourced datasets are expected to be used a lot of
times, as it significantly reduces the overall communication and
storage cost for the clients. Nevertheless, this is not the case for
any of the other aforementioned protocols. In the other protocols,
the clients need to re-encode the datasets locally for each time
the computation is delegated in order to prevent the cloud from
inferring information about the set elements and the intersection
over time.

As we illustrated in sections 4.3 and 5.3, O-PSI and EO-PSI
can be easily extended to support multiple clients. The same holds
for [15], [16], [17], [19], [20]. In contrast, [18] does not support
multiple clients, as it requires an additional logical operation that
is not supported by the homomorphic encryption scheme it uses.
Communication Complexity. The communication complexity of
O-PSI for the client who receives the result, client B, is O(c),
where c is the dataset size. Because client B sends client A the
n = 2c + 1 encrypted random values EpkB (r(B)

i ) for 1 ≤ i ≤
n, in step c.1. The communication complexity for client A, who
authorizes the operation on its dataset, is also O(c), as it sends
n values of the form EpkB (r(B)

i · (r(A)
i )−1), 1 ≤ i ≤ n to the

cloud, in step c.3. The communication complexity for the cloud is
O(c) too. Because it sends to client B the result vector

#»
t of size

n, in step d.3. Thus, the overall communication complexity of our
protocol is 3n which is linear, O(c), to the dataset size.

Note that, in EO-PSI, for a fixed probability and fixed bin’s
maximum load, the hash table length h is linear to the set cardi-
nality c. This is clearer, if we rewrite d = (1 + σ) · ch (presented
in subsection 3.5) as h = (1 + σ) · cd . During the protocol, client
B sends a single value to client A so its communication cost is
constant, in step c.1. Client A sends a single value to the cloud
and sends h bins each containing n elements to client B, in step
c.6. Therefore, client A’s communication complexity is O(c). The
cloud’s communication complexity is O(c) as well, because it
sends h bins each containing n elements to client B, in step d.4.
Therefore, the overall communication complexity is linear to the
dataset size.

In [16] for each set intersection, the client engages in a two-
round protocol, one round to upload its elements in the form of
RSA ciphertexts to the cloud with O(c) communication complex-
ity, and another to interactively compute the private set intersection
with the cloud with O(c2) communication complexity. For the
protocol in [18], the communication complexity is also quadratic
O(sc2), where s is the number of hash functions used for the
bloom filter, and the messages contain BGN encryption cipher-
texts. On the other hand, the protocols in [15], [17] have O(c)
communication complexity with messages containing symmetric
key encryption ciphertexts. Finally, the protocols in [19], [20] have
O(k) complexity, where k is the intersection size.
Computation Complexity. We evaluate the computation cost of
O-PSI by counting the number of exponentiation and factorization
operations, as their cost dominates that of other operations in the
protocol. More specifically, client B performs n exponentiations
to encrypt the random values in step c.1, and needs another n
exponentiations to decrypt the polynomial sent by the cloud in
step e.1. Also, it needs to factorize the result polynomial that costs
O(c2) in step e.2. So, in total it carries out 2n exponentiations and
factorizes a polynomial with the cost of O(c2). Client A performs
n exponentiations to authorize the set intersection in step c.2,
while the cloud carries out n exponentiations to encrypt client B’s
dataset and n exponentiations to transform client A’s dataset in
step d.2, a total of 2n exponentiations. It is interesting to note that
using the point-value representation increases the overall storage
costs at the cloud side. But, the modest increase in storage brings a
significant decrease in the computational costs, from O(c2) (when
using encrypted coefficients such as in [21]) to O(c).

Now we analyze the computation complexity of EO-PSI. In
our analysis, we do not consider the pseudorandom function invo-
cation cost as it is a fast operation and dominated by the other op-
erations (e.g. modular arithmetic, interpolation and factorization)
in our protocol. Client A, performs 2hn modular multiplication
and 2hn modular addition operations to blind the values, in step
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TABLE 3
EO-PSI Hash Table Parameters (bin size d = 100, overloading probability < 2−40).

Set size (c) 210 211 212 213 214 215 216 217 218 219 220

Number of Bins (h) 26 53 106 211 432 863 1772 3543 7282 14564 29128
σ 1.5 1.56 1.56 1.56 1.63 1.63 1.70 1.70 1.78 1.78 1.78

c.5. Also, in order for it to evaluate the two polynomials allocated
to every bin, it carries out 2hnd modular multiplication and
2hndmodular addition operations, in step c.5. So the computation
complexity of client A is O(c). Also, the cloud carries out 2hn
modular multiplication and 2hn modular addition operations to
blind the values in step d.3. Moreover, for the cloud to evaluate
the two polynomials assigned to every bin, it performs 2hnd
modular multiplication and 2hnd modular addition operations, in
step d.3. Therefore, the computation complexity of the cloud is
O(c), too. Client B executes hn modular addition operations to
unblind the cloud’s response, in step e.1. Furthermore, in step e.2,
it interpolates h polynomials where each polynomial interpolation
costs O(d) and d is a constant value. In step e.3, it factorizes h
polynomials where each polynomial factorization costs O(m2)
and m = 2d is a constant value. Hence, in total client B’s
computation cost is O(c).

The semi-honest variant of the protocol in [15] also has linear
complexity O(c), as the client computing the result and the cloud
invoke the pseudorandom permutation (PRP) c times, while the
other client invokes the PRP, 2c times. On the other hand, the
computational overhead in [16] is quadratic O(c2), as it involves
a joint PSI protocol (plus public key encryption of the dataset
elements). The protocol in [18] also has quadratic complexity,
as it involves O(c2) BGN public key encryption operations. In
[17] the client performs O(c) modular additions, while the cloud
carries out O(c2) operations to compare the expanded sets of the
users. The protocol in [19] is based on bilinear maps and requires
6c pairings at the cloud side and 2k exponentiations at the client
side, resulting in O(c) and O(k) computation complexity at the
cloud and client side respectively. The protocol in [20] is also
based on bilinear maps, it requires 6 exponentiation operations at
the client-side, k pairings for decryption of the result at the client-
side, and 8c pairing at the server-side. So the overall computation
cost of the protocol is O(c).
Storage Complexity. In our protocols, storage complexity at
the client-side is constant. In O-PSI each client needs to keep
only two keys (for the pseudorandom function and public key
encryption); and in EO-PSI it needs to keep only one key (for
the pseudorandom function). The protocols designed in [17], [19],
[20] require also constant storage complexity at the client-side.
Nevertheless, since the protocols in [15], [16], [18] support one-
off delegation, the client needs to have data locally available
to re-encode and delegate the computation and this introduces
storage complexity linear to the set size. The server side storage
complexity is linear in all protocols.
Comparison to regular PSI. The computational and commu-
nication complexity of EO-PSI is linear to the dataset size.
Currently the most efficient regular PSI protocols also have linear
complexity. Although similar in complexity, in practice the regular
PSI protocols can be more efficient. In our protocols, storage
complexity at client-side is constant. The regular PSI protocols’
storage complexity is at least linear to the set size, as each

party uses the locally available set elements. We emphasize that
delegated PSI and regular PSI protocols are designed for different
settings with different requirements and they cannot substitute
each other. Thus it is difficult to make a fair comparison. For
example, in delegated PSI protocol, the cloud has to compute the
intersection without knowing anything about both clients’ datasets,
unlike regular PSI protocols where a party knows its own set. Also
there is no way in regular PSI to reduce the storage complexity, as
there is no external server to outsource the storage. Therefore the
comparison above is only a presentation of facts and should not be
interpreted as regular PSI is better than delegated PSI or the other
way round.

8 PERFORMANCE EVALUATION

We implemented the O-PSI and EO-PSI protocols in C++ 7.
Both implementations use the NTL library 8 for the polynomial
operations. The O-PSI implementation also uses the Paillier library
9 for the Paillier homomorphic encryption. In the experiments,
we use 32-bit integers as set elements and 80-bit padding. All
experiments were run on an Ubuntu 14.04 desktop PC with an
Intel i5-4590@3.3 GHz CPU, 8 GB RAM.

In section 7, we compared our protocols with the state-of-the-
art protocols in [15], [16], [17], [18], [19], [20]. Here we compare
the performance of our protocols with the protocols in [17], [20].
We chose these two protocols because they are delegated PSI
protocols that support both storage and computation outsourcing.
Thus they are the closest to our protocols. The protocols in
[15], [16] are server-aided PSI protocols and only support one-
off computation with the help of a server. We did not choose the
protocol in [19] because the protocol in [20] is more efficient than
it (see [20]). For the protocol in [17] we implemented it using C++
and measured its performance using the hardware above, while
for the protocol in [20] we used the performance data reported
in the paper. Although the hardware used in [20] is different, this
difference would not affect the comparison results, because as we
show later, the performance difference to EO-PSI is significant,
almost 2 orders of magnitude. We also implemented the protocol
in [18]. However, the performance of this protocol is much worse
than the others and cannot scale to sets with more than a few
hundred elements. Thus we do not include it in the comparison and
provide the performance results for it separately in an appendix.

We first show in Fig. 3 the performance comparison of the four
protocols. The figure is plotted using a logarithmic scale. In the
figure, the x-axis shows the number of elements in both clients’
sets and the y-axis indicates the total running time of the protocols.
We range the set size between 210 and 220 elements. For EO-PSI,
we also set the bin size of the hash table to 100 and the probability
of overloading to less than 2−40. Using inequality 2, we calculate

7. EO-PSI’s source code is available at https://github.com/nitrogl/eo-psi
8. http://www.shoup.net/ntl/
9. http://acsc.cs.utexas.edu/libpaillier



13

the number of bins we need in the hash tables. The results are
shown in Table 3. Table 3 also shows σ, which is the ratio of the
bin size d and the expected number of elements in a bin. A σ
closer to 1 means the bins are better utilized. As we can see, the
performance of EO-PSI is much better than O-PSI and the one in
[20]. In fact, for O-PSI and [20] we skipped tests with set size
over 215 as the running time would be too long. The performance
of protocol in [17] is better than EO-PSI when the set cardinality
is less than 218, while for larger sets EO-PSI is better.

Set cardinality
210 211 212 213 214 215 216 217 218 219 220
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Fig. 3. Performance comparison of protocols (total running time).

We further show the time breakdown by step of all four
protocols in Table 4. As we can see, for EO-PSI, the running
time for each step increases almost linearly to the set size.
The data outsourcing, the computation delegation, and cloud-side
computation steps are fast. The protocol running time is dominated
by the last step which is the result retrieval step. In the result
retrieval step, client B unblinds the data received, interpolates
the polynomials, and extracts roots from the polynomials by
factorizing them. We found out that factorization takes most of
the time in this step. In the experiments with set sizes 210, 215

and 220, the factorization times are 5.32, 175.35, 5918.93 seconds,
respectively. In our implementation, we factorize polynomials by
using the NTL library. This step could be improved by improving
the underlying factorization algorithm. For O-PSI, the running
time is also dominated by the last step. It is worse than EO-PSI
because the polynomial to be factored is larger. For the protocol in
[17], the running time is dominated by the cloud-side computation.
The complexity of this step is quadratic thus it is less scalable
than EO-PSI. For the protocol in [20], outsourcing and cloud-
side computation steps dominate the running time. Although the
complexity of the protocol is linear, it uses heavy public key
operations which make it less efficient than EO-PSI.

For EO-PSI, the hash table parameters also affect the perfor-
mance. When the set size is fixed, if we increase the bin size, then
we have fewer bins to process, but the time for processing (i.e.
polynomial evaluation, blinding and factorization) each bin will
increase. To investigate the best trade-off between the number of
bins and their size, we ran experiments with different bin sizes.
The results are illustrated in Fig. 4. In the figure, the x-axis is the
bin size and the y-axis is the total running time. We range the
set size between 210 − 217 elements, and the number of bins are
calculated accordingly using inequality 2 so that the probability of
overloading is less than 2−40. In theory, we should see a (not so
sharp) “V” shape such that the running time decreases along with
decreasing bin size until some point where the running time starts
to increase when the bin size decreases. However, the results from
our experiment are not exactly as expected. In the figure, we can

see that for all the tested cases, there does exist a turning point
when the bin size is ∼ 120. Nevertheless, there is an unexpected
sharp increase in running time when the bin size is larger than
120.

0 100 200 300
Bin Size

4

6

8

10

12

14

R
un

ni
ng

 T
im

e 
(s

)

set cardinality = 210

0 100 200 300
Bin Size

40

60

80

100

R
un

ni
ng

 T
im

e 
(s

)

set cardinality = 213

0 100 200 300
Bin Size

150

200

250

300

350

400

R
un

ni
ng

 T
im

e 
(s

)

set cardinality = 215

0 100 200 300
Bin Size

600

800

1000

1200

1400

1600

R
un

ni
ng

 T
im

e 
(s

)

set cardinality = 217

Fig. 4. The performance of EO-PSI with different bin sizes.

Since the running time of EO-PSI implementation is dom-
inated by polynomial factorization which is done by NTL, we
suspect that this increase is due to some unknown implementation
choices of the NTL library. To confirm this, we measured the time
for factorizing random polynomials with degree corresponding to
the bin size in NTL. The results are shown in Fig. 5. From the
figure, we can see also a sharp increase near bin size 120. Without
a further investigation, a safer choice of bin size would be 100,
which is a bit away from the sharp increase while the running
time is not much higher.

Fig. 5. Time taken to factorize random polynomials using NTL library.

9 CONCLUSIONS

Cloud computing is rapidly gaining in popularity among indi-
viduals and businesses, mainly due to the innovation it enables
and the opportunities it offers. With its importance increasing,
outsourcing datasets and computation to the cloud becomes an
appealing approach. Nevertheless, as the cloud cannot be fully
trusted the privacy of the outsourced data is a major concern
for clients. So, the need arises for protocols that can carry out
private set operations on outsourced private data without revealing
anything about the data and the computation results to the cloud.

In this paper, we presented two such protocols for private
set intersection, O-PSI and EO-PSI. The protocols let clients
independently prepare and outsource their private datasets to the
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TABLE 4
Protocols’ performance comparison: breakdown by step (time in seconds).

Steps Protocols 210 211 212 213 214 215 216 217 218 219 220

Data
Outsourcing

EO-PSI: 0.1 0.2 0.4 0.8 1.8 3.7 7.3 14.6 30.7 59.8 126.3
O-PSI: 0.2 1 4 16.2 124.2 301.4 – – – – –
[17]: 0.007 0.01 0.02 0.05 0.1 0.2 0.4 0.8 1.7 3.5 6.7
[20]: 117.3 229.2 458.4 915.3 1842.3 3679.9 – – – – –

Computation
Delegation

EO-PSI: 0.1 0.3 0.8 1.5 3.2 6.5 13 25.6 54.3 105.2 218
O-PSI: 02.4 4.8 9.6 19.2 73.9 86.1 – – – – –
[17]: 0.007 0.01 0.02 0.05 0.1 0.2 0.4 0.8 1.6 3.4 6.3
[20]: 0.089 0.089 0.089 0.089 0.089 0.089 – – – – –

Cloud-side
Computation

EO-PSI: 0.2 0.4 0.8 1.6 3.3 6.8 13.5 26.9 57.2 109.7 226.7
O-PSI: 2.9 7 18.5 54.9 336.1 697.4 – – – – –
[17]: 0.02 0.1 0.4 1.8 7.3 29.6 121.8 493.7 1953.8 7710.2 31173.3
[20]: 90.6 178.9 368.4 739.6 1468.7 2984.5 – – – – –

Result
Retrieval

EO-PSI: 5.7 11.8 23.2 45.7 92.8 187.5 381.8 773.3 1576.8 3164.2 6293.1
O-PSI: 20.6 86.8 418.1 2036.9 26685.3 56354.8 – – – – –
[17]: 0.0005 0.0006 0.0007 0.00078 0.0008 0.001 0.0015 0.002 0.003 0.006 0.008
[20]: 10.9 21.1 42.5 90.2 179.1 364.2 – – – – –

Total

EO-PSI: 6.2 12.8 25.2 49.8 101.2 204.6 415.8 840.6 1719.1 3438.9 6864.2
O-PSI: 23.9 95.2 441.2 2109.1 27148.8 57357.5 – – – – –
[17]: 00.03 0.1 0.4 1.9 7.5 30.1 122.6 495.4 1957.1 7717.3 31186.4
[20]: 218.9 429.3 869.3 1745.2 3490.1 7028.6 – – – – –

cloud. At any point later in time, they can ask the cloud to run PSI
on their private datasets. In this process, the cloud learns nothing
about the dataset elements, the intersection, and the intersection
cardinality. Furthermore, the protocols ensure that the cloud can
compute the intersection only when all the clients agree and the
clients can securely delegate PSI computation on the outsourced
datasets an unlimited number of times with no need to download
and re-prepare the datasets. These properties make the protocols
particularly suitable for a cloud computing setting, allowing clients
to fully benefit from the increased collaboration the cloud enables
and the cost-efficient resources it provides without sacrificing their
privacy.

Although both our protocols satisfy the properties outlined,
EO-PSI is much more efficient than O-PSI for two reasons. First, it
does not use any public key encryption, which is computationally
expensive, and second it lets clients retrieve the result faster
by utilizing a hash table. A performance study of prototype
implementations of the two protocols clearly demonstrates this.
Moreover, a comparison to the performance of other similar state-
of-the-art protocols also shows that EO-PSI scales well and is
faster than them for large set sizes.

We have shown that our protocols are secure in the presence of
semi-honest parties. Even though the semi-honest model is widely
used in the literature, we would have a stronger protocol if we
relax this assumption. Therefore, in the future, we would like to
improve EO-PSI so that it relies on a weaker assumption (e.g.
malicious cloud). Finally, we would like to design protocols that
support more delegated private set operations (e.g. set different,
set union).
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APPENDIX

We also implemented the outsourced PSI protocol in [18] in C++.
We use the Pairing-Based Cryptography Library 10 for the under-
lying bilinear pairing operation. We measured the running time
with sets whose cardinalities range from 24 = 16 to 27 = 128.
The performance figures can be found in Table 5.

As we can see in the table, the performance of this protocol
is much worse than the other protocols we considered in Section
8. There are several reasons for this: (1) the complexity of the
protocol is quadratic; (2) the protocol requires costly pairing-based
BGN homomorphic encryption [38]; (3) the protocol uses Bloom

10. https://crypto.stanford.edu/pbc/

TABLE 5
Running time (in seconds) of the protocol in [18]

Steps 24 25 26 27

Data Outsourcing 8.14 16.19 32.22 64.07
Computation Delegation 130.33 517.98 2066.56 8208.07
Cloud-side Computation 191.53 767.37 3046.90 11896.68

Result Retrieval 6.73 27.85 116.67 498.94

Total 336.72 1329.39 5262.35 20667.76

filters and the Sander Young Yung Technique [39] which together
add a large hidden constant factor to the asymptotic complexity
and impact significantly the performance.
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