Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Assessing energy, lighting, room acoustics, occupant comfort and environmental impacts performance of building with a single simulation program

Citherlet, S. and Hand, Jon (2002) Assessing energy, lighting, room acoustics, occupant comfort and environmental impacts performance of building with a single simulation program. Building and Environment, 37 (8-9). pp. 845-856. ISSN 0360-1323

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents the developments, implementation and application of an extensive building representation which supports the holistic performance assessment of building performance within a single application. This new development supports various views of performance throughout the building life cycle in relation to performance domains such as energy consumption, lighting availability, occupant comfort (thermal, visual), room acoustics and the environmental impacts related to the construction materials and fuel streams over the whole building life span. To achieve this generic representation, the data model has three main features. Firstly, the geometry and physical model (i.e. the material composition of the geometrical elements) are decoupled to enable flexibility in the building description. Secondly, the physical model is structured to support the different building life cycle phases. Lastly, for each phase, the physical model comprises material and construction properties for each performance view. The corresponding data model has been implemented into ESP-r, an existing building simulation application, and its features have been extended in order to support room acoustics and environmental impacts. Finally, to demonstrate the applicability of the approach, a multiple-view performance assessment of an existing office building has been undertaken. It includes the assessment of the energy consumption, room acoustics, occupant comfort, and the environmental impacts. The simulation results have been compared with in situ measurements monitored in the building during the post-occupancy phase.