Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Use of turbine-level data for improved wind power forecasting

Browell, Jethro and Gilbert, Ciaran and McMillan, David (2017) Use of turbine-level data for improved wind power forecasting. In: 12th IEEE PES PowerTech Conference. IEEE, Piscataway, NJ. (In Press)

Text (Browell-etal-Powertech2017-Use-of-turbine-level-data-for-improved-wind-power)
Browell_etal_Powertech2017_Use_of_turbine_level_data_for_improved_wind_power.pdf - Accepted Author Manuscript

Download (274kB) | Preview


Short-term wind power forecasting is based on modelling the complex relationship between the weather forecasts and wind farm power production. To date, efforts to improve wind power forecasts have focused on improving Numerical Weather Prediction and wind farm power curve models. However, utility-scale wind farms cover large areas meaning that a single power curve model may struggle to represent the collective behaviour of large numbers of wind turbines. Contemporary statistical techniques are capable of processing large volumes of data, enabling the assimilation of measurements from individual wind turbines to construct a more detailed representation of wind farm power generation. Here, three state-of-the-art techniques are applied to forecast wind farm power production 1) directly from numerical weather predictions, and 2) by aggregating forecasts for individual wind turbines. Furthermore, it is observed that some wind turbines are better predictors than others and an aggregation process based on conditional weighting is proposed. In case studies of two large wind farms in the UK, it is shown that wind farm power forecasts comprising a conditional weighted sum of turbine-level predictions are superior to a direct wind farm forecast for horizons up to 48 hours ahead. Specifically, performance of the best-performing benchmark, the gradient boosting machine, is improved by 12% at Clyde South wind farm and by 6% at Gordonbush.