Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A new fault-ride-through strategy for MTDC networks incorporating wind farms and modular multi-level converters

Tzelepis, D. and Oulis Rousis, A. and Dyśko, A. and Booth, C. and Strbac, G. (2017) A new fault-ride-through strategy for MTDC networks incorporating wind farms and modular multi-level converters. International Journal of Electrical Power and Energy Systems, 92. pp. 104-113. ISSN 0142-0615

[img] Text (Tzelepis-etal-IJEPES-2017-A-new-fault-ride-through-strategy-for-MTDC-networks)
Tzelepis_etal_IJEPES_2017_A_new_fault_ride_through_strategy_for_MTDC_networks.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 8 May 2018.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (2MB) | Request a copy from the Strathclyde author


This paper presents a DC voltage control strategy for enhancing the fault-ride-through (FRT) capability of wind farms comprising of fully rated converter permanent magnet synchronous generators (FRC-PMSGs) connected to multi-terminal high voltage direct current (MT-HVDC) grids through modular multi-level converters (MMCs). The proposed FRT strategy is implemented on a master controller located in the offshore AC substation of each wind farm. The underlying issue addressed via the scheme relates to overvoltages in the HVDC links when the power transfer is disrupted due to faults occurring in the AC onshore grid. The corresponding Matlab/Simulinkr model has been validated using transient simulation, while the practical feasibility of the controller is demonstrated utilising Opal-RT© real-time hardware platform.