Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

New periodic orbits in the solar sail restricted three body problem

Biggs, J.D. and McInnes, C. and Waters, Thomas (2008) New periodic orbits in the solar sail restricted three body problem. In: 2nd Conference on Nonlinear Science and Complexity, 2008-07-28 - 2008-07-31.

[img]
Preview
Text (strathprints006056)
strathprints006056.pdf - Accepted Author Manuscript

Download (362kB) | Preview

Abstract

In this paper we consider periodic orbits of a solar sail in the Earth-Sun restricted three-body problem. In particular, we consider orbits which are high above the ecliptic plane, in contrast to the classical Halo orbits about the collinear equilibria. We begin with the Circular Restricted Three-Body Problem (CRTBP) where periodic orbits about equilibria are naturally present at linear order. Using the method of Lindstedt-Poincaré, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the Elliptic Restricted Three Body Problem (ERTBP). A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e = 0 and continuing to the required eccentricity of e = 0:0167. The stability of these periodic orbits is investigated.