Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

An unexpected transamination of bis[bis(trimethylsilyl)amido]zinc with dibenzylamine to form bis( dibenzylamido)zinc: structural studies by NMR spectroscopy, X-ray crystallography and theoretical calculations

Armstrong, D.R. and Forbes, G.C. and Mulvey, R.E. and Clegg, W. and Tooke, D.M. (2002) An unexpected transamination of bis[bis(trimethylsilyl)amido]zinc with dibenzylamine to form bis( dibenzylamido)zinc: structural studies by NMR spectroscopy, X-ray crystallography and theoretical calculations. Dalton Transactions, 2002 (8). pp. 1656-1661. ISSN 1477-9234

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The transamination of bis[bis( trimethylsilyl)amido]zinc with two molar equivalents of dibenzylamine in benzene solution yields the dimeric, homoleptic, zinc bis( amide) [{(PhCH2)(2)N}(2)Zn](2).C6H6 1. Characterisation of compound 1 has been performed by single-crystal X-ray diffraction, H-1/C-13 NMR spectroscopy, IR spectroscopy, melting point and elemental analysis. Variable concentration H-1 NMR spectroscopic studies have shown a dynamic monomer-dimer equilibrium in arene solution. Compound 1 is compared to the previously reported, isostructural magnesium analogue and other known zinc bis(amide) compounds. Theoretical calculations have been carried out at both SCF and DFT levels to probe the energetics involved in the transamination process.