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Abstract 8 

Linear spectral mixture analysis (LSMA) is widely employed in impervious 9 

surface estimation, especially for estimating impervious surface abundance in medium 10 

spatial resolution images. However, it suffers from a difficulty in endmember 11 

selection due to within-class spectral variability and the variation in the number and 12 

the type of endmember classes contained from pixel to pixel, which may lead to over 13 

or under estimation of impervious surface. Stratification is considered as a promising 14 

process to address the problem. This paper presents a stratified spectral mixture 15 

analysis in spectral domain (Sp_SSMA) for impervious surface mapping. It 16 

categorizes the entire data into three groups based on the Combinational Build-up 17 

Index (CBI), the intensity component in the color space and the Normalized 18 

Difference Vegetation Index (NDVI) values. A suitable endmember model is 19 

developed for each group to accommodate the spectral variation from group to group. 20 

The unmixing into the associated subset (or full set) of endmembers in each group can 21 

make the unmixing adaptive to the types of endmember classes that each pixel 22 

actually contains. Results indicate that the Sp_SSMA method achieves a better 23 

performance than full-set-endmember SMA and prior-knowledge-based spectral 24 

mixture analysis (PKSMA) in terms of R, RMSE and SE. 25 

Key words—Impervious surface, Stratification, Spectral mixture analysis, CBI 26 

1. Introduction 27 

Impervious surface is defined as any area consisting of constructed surface which 28 

water cannot infiltrate to reach the soil (Yang et al, 2010; Weng, 2012), such as roads, 29 

roofs, and parking lots. It not only serves as a key indicator of the degree of 30 

urbanization, but also affects in the micro-ecosystem change (Wang et al, 2015). The 31 

increasing replacement of nature landscape by impervious surface leads to the change 32 

of hydrological character (White & Greer, 2006; Xian et al, 2007; Du et al., 2015), the 33 

generation of heat island effects (Kato & Yamaguchi, 2007; Yuan & Bauer, 2007; 34 

Coseo & Larsen, 2014), deterioration in water quality (Conway, 2007) and other 35 
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detrimental effects. Therefore, it is essential to monitoring impervious surface 36 

distribution timely and accurately to ensure urban development is sustainable (Wu & 37 

Murray, 2005; Du & Du, 2014). 38 

Remote sensing technology has become an important method, and may be the 39 

only viable way, to effectively extract impervious surface due to its high efficiency 40 

and low cost with large coverage (Yang et al, 2010; Lu & Weng, 2006). Various 41 

studies have been conducted for impervious surface mapping, with images from a 42 

large range of satellite sensors and a variety of data sources, including MODIS images 43 

with coarse spatial resolution (Yang & Lunetta, 2011; Deng & Wu, 2013), Landsat 44 

TM/ETM+ and ASTER imagery (Hu & Weng, 2009; Sexton et al, 2013) with 45 

moderate spatial resolution, and IKONOS and QuickBird data (Lu & Weng, 2009; 46 

Zhou & Wang, 2008) with high spatial resolution. In addition to the optical remote 47 

sensing data, some other types’ data, such as nighttime photography (Kotarba & 48 

Aleksandrowicz, 2016), Synthetic Aperture Radar (SAR) imagery (Zhang et al, 2016; 49 

Zhang et al, 2014) and open social data (Hu et al, 2016), have also been studied on 50 

their application to impervious surface estimation in recent years. Among them, 51 

medium spatial resolution images might be a better choice for the urban impervious 52 

surface mapping, because they provide a good trade-off among coverage, price, and 53 

quality. 54 

However, due to the heterogeneity of urban land covers and the limitation in 55 

spatial resolution, the presence of mixed pixels has been recognized as a major 56 

problem in the analysis of medium spatial resolution images (Weng, 2012). Several 57 

unmixing methods have then been applied for impervious surface extraction, 58 

including linear spectral mixture analysis (LSMA) (Weng et al, 2009; Hu & Weng, 59 

2008; Yang & He, 2017), artificial neural network (ANN) (Mohapatra and Wu, 2008), 60 

regression analysis (Yang et al, 2003; Yang & Liu, 2005; Kaspersen et al., 2015) and 61 

regression trees (Huang & Townshend, 2003; Deng & Wu, 2013). Yet LSMA is still 62 

the most popular approach due to its simplicity and physically-based description of 63 

the fractions of different land covers (Small & Milesi, 2013; Burazerovic et al, 2013). 64 

While LSMA and LSMA based methods are easy to use in estimating impervious 65 

surface, several problems still exist. It has been found that impervious surface tends to 66 

be overestimated in the areas with small amounts of impervious surface, but is 67 

underestimated in the areas with large amounts of impervious surface (Weng, 2012; 68 

Lu and Weng, 2006). The similarity in spectral properties between impervious and 69 

pervious surface, especially impervious surface and soil, can be one of the main 70 

reasons for underestimation in urban area and overestimation in pervious area. 71 

Another problem is the difficulty in selecting endmembers due to within-class spectral 72 

variability (Foody et al, 1997). It should be noted that the differences in type, 73 

geometry and illumination etc. lead to the huge differences in term of spectral 74 

characteristics of impervious surface. Therefore, using one endmember to represent 75 

all types of impervious surfaces is often found problematic (Weng et al, 2008). The 76 

performance of LSMA can also be reduced if every pixel in the image is unmixed into 77 

a fix set of endmembers, where some pixels may only contain a subset of 78 

endmembers. 79 
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Stratification is considered as a promising process to solve these problems. In 80 

(Lu & Weng, 2004), stratification of a whole scene into subareas with similar 81 

landscape structures is suggested to improve impervious surface mapping. Several 82 

studies (Wu & Murray, 2003; Zhang et al, 2014; Small, 2001; Somers et al,2009) have 83 

attempted to employ different endmember class sets for urban and rural areas. 84 

However, the endmembers sets applied to each subarea are extracted from the entire 85 

image scene. The weakness of this treatment is the spectral variability in different 86 

subsets is not considered. The endmembers, which are selected at the extreme of an 87 

n-dimensional scatter plot of the entire image may be less representative as the pure 88 

pixels in each subset (Deng & Wu, 2013). The current methods stratify a remote 89 

sensed image into urban and rural areas through spatial information, such as texture 90 

and road density information (Zhang et al, 2014; Liu & Yang, 2013). The overlooked 91 

the spectral information would result in mis-estimation of land cover abundances. 92 

In this study, we address the above mentioned problems and propose a stratified 93 

spectral mixture analysis in spectral domain (Sp_SSMA) for impervious surface 94 

mapping. We clipped an image data set into three groups to reduce the within class 95 

variability in each subgroup based on three spectral character components, namely 96 

Combinational Build-up Index (CBI)(Sun et al, 2015), Normalized Difference 97 

Vegetation Index (NDVI) (Rouse et al, 1974) and color intensity. Then, endmembers 98 

are selected from each group independently rather than from the entire image to cope 99 

with the within class variability. An endmember set with different types and numbers 100 

is applied in each group to make it more adaptive. Impervious surface fractions are 101 

estimated by LSMA and the results of the three subgroups are combined to produce a 102 

complete map. 103 

The remainder of this article is structured as follows. The second section presents 104 

the methodology of Sp_SSMA, including the stratification, the selection of 105 

endmembers and the procedures for deriving impervious surface abundance. The third 106 

section introduces the study areas and remotely sensed data, including data 107 

preprocessing. The comparative results and discussions are reported in Section 4. 108 

Finally, conclusions are provided in Section 5. 109 

2. Methodology 110 

Based on the definition, impervious surface is a unifying theme. However it 111 

consists of a number of artificial features which have different spectral profiles in 112 

general. Figure 1(a) illustrates the mean spectral values of different impervious 113 

surface and other major land cover classes based on the pure pixels selected from a 114 

Landsat TM image. It indicates that not only impervious surfaces consist of different 115 

structures, colors, and materials, vegetation and soil also show great spectral 116 

differences within each of them. Figure 1(b) is the corresponding grouped scatter 117 

points of the sampled pixels in the feature space composed by the first two 118 

components of minimum noise fraction (MNF1and MNF2). We can see that the pure 119 

pixels are not always located at the extremes of the scatter plot as it supposed to be 120 

theoretically, due to the within-class variation of a land cover type. It also indicates 121 



4 
 

the spectral variability within several classes as well as the spectral confusion among 122 

several land covers, especially between urban impervious surfaces and bare soil. 123 

Therefore, simply extracting a single set of endmembers from the vertices in an 124 

n-dimensional scatter plot of an entire scene, like the treatment in (Powell, et al, 2007), 125 

is potentially less reliable because they cannot account for the considerable 126 

within-class variability (Rashed et al, 2003; Roessner et al, 2001). The similarity of 127 

spectral characteristics between impervious and pervious surface, especially bare soil, 128 

also prevent the SMA-based methods from achieving a promising result. 129 

 130 

Figure 1 Reflectance of land feature endmembers (a) and the corresponding feature space representation of the first 131 

two MNF components for Landsat TM reflectance image (b). 132 

 133 

To tackle this problem, we develop a stratified spectral unmixing method in 134 

spectral domain (Sp_SSMA). Three spectral feature components, CBI, intensity 135 

component of intensity-hue-saturation (IHS) and NDVI, are utilized to partition the 136 

entire data into three groups, named Group 1, Group 2 and Group 3. Each group is 137 

processed independently, including endmember extraction and spectral unmixing, to 138 

minimize the within class spectral variability and the confusion between some urban 139 

features and non-impervious land covers. The major steps in Sp_SSMA are described 140 

in Figure 2. 141 
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 142 

Figure 2 Flowchart of the Sp_SSMA method. 143 

 144 

2.1 Stratification 145 

2.1.1 CBI calculation 146 

CBI is a feature-extraction based spectral impervious surface index. It reduces 147 
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the original multi-/hyper-bands into three thematic-oriented features. They are the first 148 

component of a principal component analysis (PC1), Normalized Difference Water 149 

Index (NDWI) (Gao, 1996) and Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), 150 

to represent high albedo, low albedo and vegetation respectively. The features are 151 

calculated using the following equations (Sun et al, 2015): 152 

CBI=
(PC1nor+NDWInor) 2⁄ -SAVInor

(PC1nor+NDWInor) 2⁄ +SAVInor
     (1) 153 

with 154 

SAVI=
(ρNIR-ρRED)(1+L)

ρNIR-ρRED+L
     (2) 155 

NDWI=
ρGREEN-ρNIR

ρGREEN+ρNIR
     (3)

 

156 

where ρ
GREEN

, ρ
RED

, ρ
NIR

 represent the reflectance value of GREEN, NIR and 157 

SWIR bands, respectively. L is a correction factor ranging from 0 to l. In this study, 158 

0.5 is taken to form a vegetation image. PC1nor, SAVInor and  NDWInor are the 159 

normalized PC1, SAVI and NDWI respectively. 160 

In CBI, impervious surfaces are highlighted with positive values, vegetation is 161 

represented with negative values while bare soil and mixed land cover types are 162 

associated with numerical values about zero. Qualitative and quantitative assessments 163 

of accuracy analysis, separability between impervious surface and soil at different 164 

spatial and spectral resolutions as well as comparison with other indices indicate that 165 

CBI is a promising and reliable urban landscape index for mapping impervious 166 

surface areas (Sun et al, 2015). 167 

2.1.2 I calculation 168 

The IHS color space can be regarded as a two-dimensional color vector and one 169 

intensity vector (Córdoba-Matson et al, 2010). That is to say, the spectral magnitude 170 

of a land feature mainly lies in the intensity component, which is expressed as 171 

I=∑ ρ
VIR-i

n
i=1 /n     (4) 172 

where ρ
VIR-i

 is the ith VIR band of a pixel, n is the total number of VIR bands. The 173 

intensity value of the bright impervious surface tends to show the largest distinction 174 

with the background land features. 175 

2.1.3 NDVI calculation 176 

NDVI (Rouse et al, 1974) is an effective index to measure vegetation content 177 

which employs the peak and valley reflectances at NIR and RED bands to form the 178 

vegetation index (Huete, 1988). In this study, NDVI is utilized to make the distinction 179 

of vegetation due to their high NDVI values. The NDVI is calculated using Eq. (5) 180 
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(Rouse et al, 1974). 181 

NDVI=
ρNIR-ρRED

ρNIR+ρRED
     (5) 182 

where  ρ
RED

  and ρ
NIR

 represent the reflectance values of GREEN, NIR and SWIR 183 

bands, respectively. 184 

2.1.4 Threshold selection 185 

The threshold selection for stratification is crucial to delineate the biophysical 186 

distribution of the impervious surface from other land covers. In this study, a 187 

transformation (Liu et al, 2011) was utilized to improve the separability between 188 

different land cover types. The gray-scaled index images, namely CBI, I and NDVI, 189 

were enhanced by adopting Eq. (6) (Liu et al, 2011). 190 

nornorenh iii )5.0)](arctan[
1

(  


     (6) 191 

Where ienh is the enhanced index map, inor is the normalized index map, λ is a 192 

sensitivity factor and θ is the coarse estimation of mean value of the target land 193 

cover type, or more precisely impervious surface in CBI and I while vegetation in 194 

NDVI. 195 

The enhanced intensity maps are used to stratify the whole image. Otsu (Otsu, 196 

1979) proposed a histogram-based threshold selection method that is suitable for 197 

separating an object from its background. We use this method to automatically select 198 

the threshold T for stratification. In Otsu’s method (Otsu, 1979), a threshold T is 199 

selected to maximize 200 

б
2(T)=

(μω1(T)-ω2(T))
2

ω1(T)ω2(T)
     (7) 201 

where ω1(T)=∑ p
i

T
i=0 , ω2(T)= ∑ pi

255
i=T+i ,𝜇 = ∑ 𝑖𝑝𝑖

255
𝑖=0 , and p

i
 is the probability of 202 

the gray level i. TCBI, TI and TNDVI, the threshold of the enhanced CBI, I and NDVI 203 

respectively, are obtained using Eq. (7) and used to stratify the image. Three groups 204 

are defined as follows. 205 

Group 1: CBIenh>TCBI, Ienh>TI and NDVIenh < TNDVI 206 

Group 3: CBIenh<TCBI and NDVIenh>TNDVI 207 

Group 2: ((𝐶𝐵𝐼𝑒𝑛ℎ < 𝑇𝐶𝐵𝐼) ∩ (𝑁𝐷𝑉𝐼𝑒𝑛ℎ < 𝑇𝑁𝐷𝑉𝐼)) ∪ ((𝐶𝐵𝐼𝑒𝑛ℎ > 𝑇𝐶𝐵𝐼) ∩208 

(𝐼𝑒𝑛ℎ < 𝑇𝐼)) ∪ ((𝐶𝐵𝐼𝑒𝑛ℎ > 𝑇𝐶𝐵𝐼) ∩ (𝐼𝑒𝑛ℎ > 𝑇𝐼) ∩ (𝑁𝐷𝑉𝐼𝑒𝑛ℎ > 𝑇𝑁𝐷𝑉𝐼)) , (i.e. is the 209 

remaining region.) 210 

2.2 Endmember selection 211 

Endmember extraction is critical. In this study, endmembers were selected in 212 
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each group independently, rather than from the entire image, to achieve more adaptive 213 

spectral characters. The endmember selection in each subset follows the usual 214 

minimum noise fraction (MNF)-based procedure. Spectral feature spaces were 215 

generated using the first three MNF components, and the typical pure pixels are those 216 

located at the extreme vertices of the data cloud in the scatter plots. Endmembers of 217 

the three sub-regions were indentified from the vertices of the scatterplots in each 218 

sub-scene independently. The extreme or less extreme pure pixels in the original 219 

image located at the extreme points in different groups so as to balance the within 220 

class variation and easy implement of extreme pixels selection. The number and type 221 

of endmember sets in each sub-region is determined based on the corresponding 222 

respective biophysical characteristics. 223 

The combined criteria of Group 1 can make it reasonable to treat Group 1 data as 224 

containing no vegetation component. That is to say, Group 1 is composed of 225 

impervious surface and soil with vegetation pixels masked out by intensity component 226 

and NDVI. In contrast, the area of Group 3, which contains a low CBI value and high 227 

NDVI value, is mainly composed of vegetation and soil, with small amount of low 228 

albedo impervious surface. As for Group 2, impervious surface (high albedo and low 229 

albedo), soil and vegetation form the land cover features. Therefore, different 230 

endmembers are defined for each Group as follows. 231 

Group 1: high-albedo, low albedo and soil (H-L-S).  232 

Group 2: high albedo, low albedo, soil and vegetation (H-L-S-V).  233 

Group 3: low-albedo, soil and vegetation (L-S-V). 234 

2.3 Impervious surface estimation 235 

The LSMA approach is physically based on the assumption that the spectrum for 236 

each pixel is a linear combination of all endmembers in the pixel (Wu, 2004) with the 237 

proportions of the endmembers representing the percentage of the land feature. The 238 

fraction image of each endmember is estimated through inversion of the linear 239 

combination with the spectral proportions of the endmembers representing the 240 

percentage of the land feature. LSMA was also under the assumption that no 241 

interaction between the photons reflected by each component. With these assumptions, 242 

a LSMA with full abundance constraints can be expressed as (Lu & Weng, 2006): 243 

b

N

i

biib eRfR 
1

,      (8) 244 

where 245 

01
1




i

N

i

i ff      (9) 246 

where bR  is a mixed pixel’s reflectance at band b, N is the number of endmembers, 247 

biR ,  is the reflectance of endmember i at band b, if  is the fraction of endmember i, 248 
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and be
 is the residual error. 249 

As high and low albedo endmembers both are associated to impervious surface, 250 

the final impervious surface fraction is calculated by summing the abundance of high 251 

and low albedo endmembers for each mixed pixel. Then, the impervious surface 252 

abundance in the three urban subsets was mosaicked to build the final regional 253 

impervious surface abundance map. 254 

3 Study area and data 255 

Multi-sensor data, namely Landsat TM and ASTER, with two study sites were 256 

investigated to test he proposed Sp_SSMA algorithm (Figure 3). 257 

 258 

Figure 3 The location of study area: (a)The false color image covering the Qingdao city, China, illustrated with 259 

Landsat TM image (R: band 4, G: band 3, B: band 2), (b)The false color image covering the Shenyang city, China, 260 

illustrated with ASTER image (R: band 3, G: band 2, B: band 1). 261 

3.1 Landsat TM imagery 262 

The first study area is an urban transect in the region of Qingdao, China. As 263 

shown in Figure 3(a), a scene of Landsat TM image acquired on July 15, 2009 was 264 

employed for this study, suggesting that a large diversity of land cover properties 265 

present within the study area. Different impervious surfaces, such as residential areas, 266 

mixed-use areas, commercial and industrial districts, are shown in the image. 267 

Non-urban land cover types include water bodies, green vegetation and bare soils. 268 

 269 
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The city of Qingdao is situated in the south of the Shandong Province, adjacent 270 

to the Huanghai Sea (Figure 3(a)). As an important region in Eastern China, Qingdao 271 

has seen rapid development. The annual GDP reached 869.2 billion Yuan in 2014, 272 

with an increase of 8.0%, ranking first in Shandong Province and fourteenth out of 273 

China's top 20 cities. The fast economic growth is accompanied by rapid urbanization, 274 

causing transformation from nature environment to man-made surface. As for urban 275 

area, the historic town is located in the eastern part of the study area while the new 276 

district mainly lies in the western part. The suburban area is dominated by forest land 277 

while agriculture land located mainly in the northern part of the study area. 278 

3.2 ASTER imagery 279 

The second study area (Figure 3(b)), located in Shenyang, China, is a typical 280 

heavy industrial area since early 1900s. Aster imagery was collected over the area on 281 

August 17, 2004. Shenyang is the provincial capital and largest city of Liaoning 282 

Province, as well as an important heavy industrial base and a transportation hub in 283 

Northeast China. Under the reform and open policies, Shenyang has experienced 284 

sustained and high speed growth and urbanization since the late 1970s. After the 285 

“revitalizing the old industrial bases in Northeastern China” strategy in 2003, 286 

Shenyang was identified as the core of the new-industrialization zone for national 287 

demonstration (Zhang et al, 2007). It is expected to offer a demonstration for China’s 288 

change in industrial and economic development mode. Under such circumstances, 289 

Shenyang’s urbanization will definitely continue to increase rapidly, and a more 290 

complex landscape resulting from industrial transformation will be observed. 291 

3.3 Data preprocessing 292 

The Landsat TM image has six spectral bands (except the thermal band) with a 293 

spatial resolution of 30m. The ASTER image has 9 bands with different spatial 294 

resolutions (except the thermal bands), two visible bands, and one near infrared (NIR) 295 

band with the spatial resolution of 15 m, six short wavelength IR (SWIR) bands with 296 

30m resolution. The 15m ASTER bands were resampled to 30m with the application 297 

of nearest-neighbor resampling algorithm.  298 

Atmospheric correction was applied to neither of the images due to generally 299 

good weather condition. Radiation calibration was conducted prior to data processing. 300 

With the Landsat TM and ASTER reflectance images, water pixels were identified 301 

and removed with the help of unsupervised classification. Additionally, the Google 302 

Earth images acquired on July 22, 2009 and Oct 19, 2004 were used as ground 303 

reference data for accuracy assessment respectively.  304 

 305 
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4 Experimental Results and Discussions 306 

4.1 Experimental design 307 

To evaluate the performance of the proposed method for mapping impervious 308 

surface abundance and distribution, the corresponding Google Earth images, which 309 

were generated near the acquisition date of Landsat TM and ASTER images 310 

respectively, were used as the ground reference. The spatial resolution of Google 311 

Earth images in both study areas is 0.5 m and each pixel is then treated as pure pixel. 312 

After obtaining the estimation for the actual imperviousness and estimated 313 

imperviousness, three quantitative estimators were adopted to assess the accuracy of 314 

impervious surface abundance modeled by Sp_SSMA. They are correlation 315 

coefficient (R), root mean square error (RMSE) and systematic error (SE). 316 

Specifically, R means the statistical relationships between the estimated and actual 317 

imperviousness, RMSE reflects the relative estimated errors of impervious surface 318 

abundances, and SE measures the bias, an overall tendency of over- or 319 

under-estimation. These three accuracy metrics can be calculated using Eqs. (11) to 320 

(13) respectively as follows. 321 














N

i

i

N

i

i

N

i

ii

ffff

ffff

R

1
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1

2

1
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     (11)

 322 





N

i

ii ff
N

RMSE
1

2)ˆ(
1

         (12)

 323 





N

i

ii ff
N

SE
1

)ˆ(
1

              (13)

 324 

where if̂  is the estimated impervious surface fraction of sample i using Sp_SSMA,325 

f̂  is the mean value of the samples; if  is the true impervious surface proportion 326 

derived from Google Earth of pixel i; and N is the number of samples. 327 

In order to compare the performance of impervious surface estimation of 328 

Sp_SSMA, comparative analysis is performed with a simple fixed four-endmembers 329 

SMA (fixed SMA) and the state-of-the-art hierarchical SMA, Prior-knowledge-based 330 

spectral mixture analysis (PKSMA) (Zhang et al, 2014). As for fixed SMA and 331 

PKSMA, high albedo, low albedo, soil and vegetation are chosen as a fixed set of 332 

endmembers. The extreme pixel clusters at MNF-based feature space are utilized to 333 

identify the spectral of each endmember. 334 

 335 
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4.2 Stratification result 336 

As presented in Section 3, the enhanced CBI, I component and NDVI values 337 

were taken to construct the subgroups for spectral unmixing. In this study, 338 

λCBI,λI,λNDVI are 20 and θCBI,θI,θNDVI are 0.5 for the normalized indices in both the 339 

images. Figures 4 and 5 show the original indices images and their histograms, 340 

together with the corresponding transformed result the two study areas respectively. It 341 

is clear that the separation between impervious surface and background information in 342 

CBI, I and vegetation and background fraction in NDVI is improved effectively. The 343 

histograms clearly show the apparent separations between the lower and higher values. 344 

It is suggested that the transformation plays an active role in urban image description, 345 

which may have a positive impact on stratification. 346 

 347 
Figure 4 The transformation for feature indices enhancement in Landsat TM: (a), (e), (i) are the original CBI, I and 348 

NDVI images, (b), (f), (j) are their corresponding histogram images; (c), (g), (k) are the enhanced CBI, I and NDVI 349 

images, (d), (h), (l) are their corresponding histogram images. 350 

 351 

 352 
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 353 
Figure 5 The transformation for feature indices enhancement in ASTER: (a), (e), (i) are the original CBI, I and 354 

NDVI images, (b), (f), (j) are their corresponding histogram images; (c), (g), (k) are the enhanced CBI, I and NDVI 355 

images, (d), (h), (l) are their corresponding histogram images. 356 

 357 

Table 1. The threshold values. 358 

 Landsat TM ASTER 

CBIenh 0.40 0.42 

Ienh 0.38 0.38 

NDVIenh 0.42 0.45 

 359 

The automatically selected thresholds and rules for stratification in this 360 

experiment were shown in Table 1. The location of each sub-region obtained by the 361 

stratification rules (Figure 6) illustrates that Group 1 mainly lies in the new distinct in 362 

urban area, while Group 2 mainly lies in the urban fringe, industrial district and 363 

historic town, and Group 3 in suburban area. Further analysis demonstrated that the 364 

three main land cover types show significant differences among three groups. As for 365 

impervious surface, in the area of Group 1, the high and low albedo both present a 366 

relatively higher reflectance comparing with impervious surface fractions in other 367 

subsets. As for Group 2, the impervious surfaces are mainly made up of tile-roofed 368 

historic buildings, industrial area and mixed types of impervious material. The low 369 

albedo impervious surface pixels belong to Group 3 are mainly composed of metal 370 

sheet masonry. When considering the soil fraction, it tends to be composed of nature 371 

impervious land covers, such as sand and stone in construction sites and bare rocks in 372 

Group 1 and artificial land feature such as farmland and wasteland in Group 2. The 373 

nature dark bare soil is predominant in soil fractions in Group 3. Vegetation only 374 

appears in Group 2 and 3. Crops in growing season, nature grasslands, shrub lands 375 

and forest are the main composition in Group 3, whilst some artificial green land in 376 

urban area and urban fringe are graded into Group 2. As results, the three unmixing 377 

models are suitable to be applied to the three groups respectively. 378 
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 379 

 380 

Figure 6 The stratification result: (a)Landsat TM image, (b)ASTER image. 381 

 382 

In order to evaluate the accuracy of stratification, that is to say, there should be 383 

no vegetation fractions in Group 1 and no high albedo fractions in Group 3, 200 pixels 384 

were randomly selected in Group 1 and 3 in both study sites respectively. The overall 385 

accuracy of the stratification method were 92.75% in Group 1 and 95.50% in Group 3 386 

with the help of Google Earth images as the reference data. The mis-stratifications 387 

were part of the error sources. Therefore, the high accuracy obtained indicates that 388 

this error can be neglected. 389 

4.3 Impervious surface abundance 390 

With the identified three urban area subgroups and different endmember sets 391 

achieved independently in each subarea, spectral unmixing was performed. The 392 

impervious surface abundance images are reported in Figures 7(a) and 8(a). Visual 393 

inspection found that the spatial distribution of impervious surface fraction matches 394 

well with known impervious surface distribution of Qingdao and Shenyang. A 395 

detailed insight into the general pattern of impervious surface fraction saw that the 396 

abundance value was higher in the central business district (CBD) areas and along the 397 

transportation lines, lower in suburban areas, and near zero in the rural and vegetated 398 

areas as expected. However, in less developed areas, especially the areas of Group 3, 399 

several paths of impervious surface areas failed to be recoginized which could be a 400 

primary error source.  401 

Quantitative validations were also conducted. 400 sites were randomly selected 402 

on the Landsat and ASTER images, respectively, for validation. Each site is a window 403 

of 3 pixels by 3 pixels, covering 90 m by 90 m, since their spatial resolution is 30 m. 404 

180 pixels by 180 pixels on the Google Earth images are associated with each site, 405 

since its spatial resolution is 0.5 m. The estimated total impervious surface abundance 406 

for each site is compared with the ground reference provided by the Google Earth 407 
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images. The reason to utilize a window area to validate the performance is to reduce 408 

the problem caused by image registration error.  409 

Quantitative analysis in Table 2 indicates that strong positive correlations with 410 

reference impervious surface fraction with relatively small RMSE and SE values with 411 

an R of 0.89 and 0.83, SE of 2.37% and 3.59%, whilst RMSE of 10.24% and 12.57% 412 

respectively. With a detailed analysis, we see a better performance is achieved in 413 

developed areas (e.g. an R of 0.86 and 0.81, an SE of 0.91% and 1.58%, a RMSE of 414 

8.53% and 11.91%) when compared to less developed areas (e.g. an R of 0.84 and 415 

0.79, an SE of 5.23% and 4.86%, RMSE of 12.89% and 15.32%).  416 

 417 

 418 

Figure 7 The impervious surface abundance images of Landsat TM using Sp_SSMA (a), PKSMA (b) and 419 

fixed-SMA(c). 420 

 421 
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 422 

 423 

Figure 8 The impervious surface abundance images of ASTER using Sp_SSMA (a), PKSMA (b) and 424 

fixed-SMA(c). 425 

 426 

Table 2. Accuracy assessment of impervious surfaces with Sp_SSMA, PKSMA and fixed- SMA. 427 

  Sp_SSMA PKSMA Fixed-SMA 

  Landsat ASTER Landsat ASTER Landsat ASTER 

Over all 

R 0.89 0.83 0.84 0.76 0.79 0.75 

RMSE 10.24% 12.57% 11.24% 17.10% 15.13% 19.28% 

SE 2.37% 3.59% 3.47% 6.11% 5.09% 8.19% 

Developed 

R 0.86 0.81 0.89 0.63 0.73 0.63 

RMSE 8.53% 11.91% 9.72% 14.91% 15.52% 13.02% 

SE 0.91% 1.58% 1.43% -3.91% -8.18% 3.34% 

Less-developed 

R 0.84 0.79 0.76 0.64 0.81 0.51 

RMSE 12.89% 15.32% 14.76% 19.49% 14.13% 21.22% 

SE 5.23% 4.86% 8.05% 8.47% 7.84% 12.47% 

 428 

 429 
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4.4 Comparative analysis 430 

To demonstrate the effectiveness of proposed Sp_SSMA, PKSMA (Figures 7(b) 431 

and 8(b)) and fixed-SMA (Figures 7(c) and 8(c)) were carried out for comparison. 432 

Through a visual qualitative comparison, a similar impervious surface distribution 433 

illustration is observed in most parts of the study sites. Impervious surface of high 434 

abundance lies along the coastline and the northwest portion with low fraction in 435 

suburban and rural areas in Qingdao. The ASTER image, which covers an urban 436 

transect in the region of Shenyang, possesses a higher impervious surface fraction 437 

values in the north part of the study area. 438 

However, severe misestimation can be observed in both four-endmember SMA 439 

and PKSMA. Generally, an overestimation can be observed in suburban and rural 440 

areas while the impervious surface abundance value of inner-city regions is more 441 

likely to be under-estimated in fix-SMA and PKSMA. The area in magenta circle is 442 

impervious surface mixed up with pervious materials. An obvious overestimation is 443 

observed in PKSMA in Figures 7(b) and 8(b). The land surface in red circles on 444 

Figures 7 and 8 , which are graded in Group 2 in Sp_SSMA, are ought to be mainly 445 

composed of farmland and other pervious surface which have extremely low 446 

impervious surface fraction values. Severe over-estimation can be observed in both 447 

PKSMA and four-endmember SMA. As for the area with high impervious surface 448 

fraction values, PKSMA and four-endmember SMA tend to be underestimated. On 449 

one hand, the small impervious surface patches in green circles in suburban and rural 450 

areas which are supposed to have high impervious surface abundance, are 451 

undervalued seriously in four-endmember SMA and PKSMA. On the other hand, 452 

PKSMA and fixed-SMA tend to underestimate the impervious surface fraction values 453 

in the highly urbanized old districts as marked by blue circles. This phenomenon is 454 

much more obvious in Shenyang city as reported in Figure 8. The reason lies in the 455 

inability of entire-image-achieved endmember spectrum in expressing the complex 456 

impervious surface constitution, especially in the historic towns. Shenyang, in 457 

particular, is composited of diverse industrial, commercial and residential landscape 458 

that can be traced from decades ago to present day. The industrial and economic 459 

development transformation also contributed to the complexity of impervious surface 460 

types. The results indicate that it is important that the endmembers subsets are 461 

extracted and applied in each group of data separately and highlight the advantage of 462 

spectral domain stratification. However, Sp_SSMA shows a relative poor performance 463 

in mapping transportation lines when compared with four-endmember SMA and 464 

PKSMA as shown by the region in yellow circle. The reason lies in that transportation 465 

lines are likely to be mixed up with pervious surface in suburban or rural areas due to 466 

the limited resolution. The absence of the representative endmembers leads to the 467 

poor performance on transportation lines. 468 

The quantitative results of accuracy assessment via R, RMSE and SE are 469 

reported in Table 2. Note that these accuracy assessments were calculated for the 470 

entire image, and for developed areas (impervious surface abundance great than or 471 

equal to 30%) and less-developed areas (impervious surface abundance less than 30%) 472 
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as well. The quantitative accuracy assessment in Table 2 shows that the overall 473 

performance of the Sp_SSMA is better than the others, with R of 0.79 and 0.75, SE of 474 

5.09 % and 8.19%, RMSE of 15.13% and 19.28% for simple four-endmember SMA, 475 

while R of 0.84 and 0.76, SE of 3.47 % and 6.11%, RMSE of 11.24% and 17.10% for 476 

PKSMA. As for the fixed-endmember SMA, a much higher error level was observed. 477 

Further analyses reveal that a severe over-estimation is given by PKSMA and 478 

four-endmember SMA in less developed areas with significantly high values of SE, 479 

and RMSE. That’s because in PKSMA, some low-density areas were misclassified as 480 

high-density areas, resulting some soil were regarded as impervious surface during 481 

spectral unmixing processes on one hand. Moreover, in order to ensure the integrity of 482 

impervious surface information, NDVI and RED band doesn’t always perform well in 483 

eliminate vegetation information. On the other hand, the endmember sets for all 484 

subsets in PKSMA were chosen through the original image while different 485 

combinations were applied for each subgroup. It ignored the variability within each 486 

land feature class which would lead to confusion between land cover with similar 487 

spectral characteristics. For developed areas, the performance of the PKSMA and the 488 

proposed SMA method is satisfactory and comparable in new-districts-dominated 489 

Qingdao, with old-districts-dominated Shenyang on the opposite site. When compared 490 

to Sp_SSMA, PKSMA undervalued some high abundance impervious surface in rural 491 

area with low density due to the confusion with soil. As for regions with high 492 

impervious surface fraction in urban area, overestimation can be observed due to the 493 

absence of soil endmember in high-density new district areas in PKSMA whilst old 494 

districts are suffering from underestimation. Meanwhile, PKSMA achieved a slightly 495 

better performance than that of Sp_SSMA in transportation lines. 496 

 497 

5 Conclusions   498 

In this paper, a stratified spectral mixture analysis in spectral domain (Sp_SSMA) 499 

method was presented for estimating the impervious surface fraction in urban areas 500 

through stratification. The Sp_SSMA takes advantage of the features of CBI, I 501 

component and NDVI to stratify the entire image into three subareas, named Group 1, 502 

Group 2 and Group 3. The performance of Sp_SSMA is demonstrated through the 503 

relationship with the impervious surfaces abundance derived from Sp_SSMA and 504 

manual digitizing which are regarded as ground reference. Moreover, visual 505 

inspection and quantitative analysis show that Sp_SSMA improved the accuracy of 506 

impervious surface estimation when compared with the existing LSMA-based method 507 

(e.g. fixed-SMA, PKSMA). A further analysis suggests that Sp_SSMA estimates 508 

impervious surface abundances in both developed and less-developed areas with 509 

satisfying results. The proposition of Sp_SSMA improved the accuracy of mapping 510 

impervious surface fraction with simple and convenient image stratification approach 511 

which may offer a help to urban land use management.  512 

It can be considered that implementing the stratification approach into 513 
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impervious surface abundance estimation may further reduce the spectral similarity 514 

between impervious surface and bare soil and reduce the within class variability in 515 

each subgroup. Though the three land cover types still suffer from intra-class 516 

variability due to the complex light scattering mechanisms in surface objects, different 517 

constituent materials, the differences between impervious surfaces are small enough 518 

to be represented by 1 or 2 endmembers while vegetation and soil can be 519 

characterized by 1 endmember respectively. Thus, Sp_SSMA can promise more 520 

reliable impervious surface fraction estimation. However, there are still confusions 521 

between impervious surface and soil in urban fringe, since the land use structures are 522 

tend to be disordered and the spectral information of impervious surface and bare soil 523 

is quite alike.  524 

Another advantage of the proposed Sp_SSMA is that it takes advantage of 525 

stratification information to select endmembers in each sub-group independently. 526 

While stratification has been studied extensively [32], [38]-[40], little research has 527 

been conducted to consider the spectral variability in different subareas. Although the 528 

existing researches applied different endmembers to different subset, the endmembers 529 

were achieved from the entire image scene rather than each sub-area that have been 530 

classified. The Sp_SSMA takes advantage of the reduction of spectral confusion 531 

between similar objects and within class variability in each sub-group to obtain 532 

endmembers in each sub-group independently. Therefore, by using Sp_SSMA, inner 533 

layer information is made the best use.  534 

Even though Sp_SSMA markedly improved the accuracy of impervious surface 535 

estimation, confusion between impervious surface and soil in suburban areas is still a 536 

major concern. This confusion results in the overestimation of impervious surface 537 

abundance in suburban and rural areas. More effort is still needed to address this 538 

dilemma. In addition, less estimation of the traffic roads in the rural areas is another 539 

problem to overcome. Furthermore, the accuracy and efficiency of stratification 540 

affects the result of impervious surface abundance extraction largely. Specifically, the 541 

non-existing of a specific land cover endmember, such as transformation lines in 542 

Group 2, may lead to misestimation of impervious surface fraction. Future research is 543 

needed to enhance the stratification model with more divisibility between land cover 544 

features with similar characteristics. 545 

Acknowledgements 546 

This work was supported by Chinese Natural Science Foundation Projects 547 

(41471353) and National Key Research and Development Program of China (Project 548 

Ref. No. 2016YFB0501501). 549 

  550 



20 
 

Reference: 551 

Burazerovic, D., Heylen, R., Geens, B., Sterckx, S., & Scheunders, P., 2013. 552 

Detecting the adjacency effect in hyperspectral imagery with spectral unmixing 553 

techniques. IEEE Journal of Selected Topics in Applied Earth Observations & Remote 554 

Sensing, 6(3), 1070-1078. 555 

Conway, T. M., 2007. Impervious surface as an indicator of ph and specific 556 

conductance in the urbanizing coastal zone of New Jersey, USA. Journal of 557 

Environmental Management, 85(2), 308-16. 558 

Córdoba-Matson, M. V.  Gutiérrez, J.  and Porta-Gándara, M. Á., 2010. Evaluation 559 

of Isochrysis galbana (clone T-ISO) cell numbers by digital image analysis of color 560 

intensity. Journal of applied phycology, 22(4), 427-434. 561 

Coseo, P., & Larsen, L., 2014. How factors of land use/land cover, building 562 

configuration, and adjacent heat sources and sinks explain urban heat islands in 563 

Chicago. Landscape & Urban Planning, 125(6), 117-129. 564 

Deng, C., & Wu, C., 2013. A spatially adaptive spectral mixture analysis for mapping 565 

subpixel urban impervious surface distribution. Remote Sensing of Environment, 566 

133(12), 62-70. 567 

Deng, C., & Wu, C., 2013. The use of single-date modis imagery for estimating 568 

large-scale urban impervious surface fraction with spectral mixture analysis and 569 

machine learning techniques. Isprs Journal of Photogrammetry & Remote Sensing, 570 

86(4), 100-110. 571 

Du, Q., & Du, P., 2014. Modified multiple endmember spectral mixture analysis for 572 

mapping impervious surfaces in urban environments. Journal of Applied Remote 573 

Sensing, 8(1), 5946-5957. 574 

Du, S., Shi, P., Rompaey, A. V., & Wen, J., 2015. Quantifying the impact of 575 

impervious surface location on flood peak discharge in urban areas. Natural Hazards, 576 

76(3), 1457-1471. 577 

Foody, G. M., Lucas, R. M., Curran, P. J., & Honzak, M., 1997. Non-linear mixture 578 

modelling without end-members using an artificial neural network. International 579 

Journal of Remote Sensing, 18(18), 937-953. 580 

Gao, B. C., 1996. NDWI—a normalized difference water index for remote sensing of 581 

vegetation liquid water from space. Proc Spie, 58(3), 257-266. 582 

Hu, T., Yang, J., Li, X., & Gong, P., 2016. Mapping urban land use by using Landsat 583 

images and open social data. Remote Sensing, 8(2), 151. 584 

Hu, X. & Weng Q., 2008. Estimating impervious surfaces from medium spatial 585 

resolution imagery: a comparison between fuzzy classification and LSMA. 586 

Catastrophe and contention in rural China :. Cambridge University Press. 587 

Hu, X., & Weng, Q., 2009. Estimating impervious surfaces from medium spatial 588 

resolution imagery using the self-organizing map and multi-layer perceptron neural 589 

networks. Remote Sensing of Environment, 113(10), 2089-2102. 590 

Huang, C.  & Townshend. J. R. G., 2003. A stepwise regression tree for nonlinear 591 

approximation: applications to estimating subpixel land cover.International Journal of 592 

Remote Sensing, 24(1), 75-90. 593 



21 
 

Huete, A. R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of 594 

Environment, 25(3), 295-309. 595 

Kaspersen, P., Fensholt, R., & Drews, M., 2015. Using Landsat vegetation indices to 596 

estimate impervious surface fractions for European cities. Remote Sensing, 7, 597 

8224-8249. 598 

Kato, S., & Yamaguchi, Y., 2007. Estimation of storage heat flux in an urban area 599 

using aster data. Remote Sensing of Environment, 110(1), 1-17. 600 

Kotarba, A. Z, Aleksandrowicz, S., 2016. Impervious surface detection with nighttime 601 

photography from the International Space Station. Remote Sensing of Environment, 602 

176, 295-307. 603 

Liu, J., Fang, T., & Li, D., 2011. Shadow detection in remotely sensed images based 604 

on self-adaptive feature selection. IEEE Transactions on Geoscience & Remote 605 

Sensing, 49(12), 5092-5103. 606 

Liu, T., & Yang, X., 2013. Mapping vegetation in an urban area with stratified 607 

classification and multiple endmember spectral mixture analysis. Remote Sensing of 608 

Environment, 133(12), 251-264. 609 

Lu, D., & Weng, Q., 2004. Spectral mixture analysis of the urban landscape in 610 

indianapolis with landsat ETM+ imagery. Photogrammetric Engineering & Remote 611 

Sensing, 70(9), 1053-1062. 612 

Lu, D., & Weng, Q., 2006. Use of impervious surface in urban land-use classification. 613 

Remote Sensing of Environment, 102(1–2), 146-160. 614 

Lu, D., & Weng, Q., 2009. Extraction of urban impervious surfaces from an Ikonos 615 

image. International Journal of Remote Sensing, 30(5), 1297-1311. 616 

Mohapatra, R. P. & Wu, C., 2008. Subpixel imperviousness estimation with IKONOS 617 

imagery: an artificial neural network approach, Taylor & Francis Group: London, UK, 618 

21-37. 619 

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE 620 

Transactions on Systems Man & Cybernetics, 9(1), 62-66. 621 

Powell, R. L., Roberts, D. A., Dennison, P. E., & Hess, L. L., 2007. Sub-pixel 622 

mapping of urban land cover using multiple endmember spectral mixture analysis: 623 

manaus, brazil. Remote Sensing of Environment, 106(2), 253-267. 624 

Rashed, T., Weeks, J. R., Roberts, D., Rogan, J., & Powell, R., 2003. Measuring the 625 

physical composition of urban morphology using multiple endmember spectral 626 

mixture models. Photogrammetric Engineering & Remote Sensing, 69(9), 1011-1020. 627 

Roessner, S., Segl, K., Heiden, U., & Kaufmann, H., 2001. Automated differentiation 628 

of urban surfaces based on airborne hyperspectral imagery. IEEE Transactions on 629 

Geoscience & Remote Sensing, 39(7), 1525-1532. 630 

Rouse, J. W. Haas R. H., Deering, D. W. Schell, J. A. and Harlan, J. C., 1974.  631 

Monitoring the vernal advancement and retrogradation (green wave effect) of natural 632 

vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD., 371. 633 

Sexton, J. O., Song, X. P., Huang, C., Channan, S., Baker, M. E., & Townshend, J. R., 634 

2013. Urban growth of the Washington, D.C.–baltimore, md metropolitan region from 635 

1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote 636 

Sensing of Environment, 129(2), 42-53. 637 



22 
 

Small, C., & Milesi, C., 2013. Multi-scale standardized spectral mixture models. 638 

Remote Sensing of Environment, 136(5), 442-454. 639 

Small. C., 2001. Estimation of urban vegetation abundance by spectral mixture 640 

analysis. International Journal of Remote Sensing, 22(22), 299-307. 641 

Somers, B., Delalieux, S., Verstraeten, W. W., & Verbesselt, J., 2009. Magnitude- and 642 

shape-related feature integration in hyperspectral mixture analysis to monitor weeds 643 

in citrus orchards. Geoscience & Remote Sensing IEEE Transactions on, 47(11), 644 

3630-3642. 645 

Sun, G., Chen, X., Jia, X., & Yao, Y., 2015. Combinational build-up index (cbi) for 646 

effective impervious surface mapping in urban areas. IEEE Journal of Selected Topics 647 

in Applied Earth Observations & Remote Sensing, 9(5), 1-12. 648 

Wang, Z., Gang, C., Li, X., Chen, Y., & Li, J., 2015. Application of a normalized 649 

difference impervious index NDII to extract urban impervious surface features based 650 

on Landsat TM images. International Journal of Remote Sensing, 36(4), 1055-1069. 651 

Weng, Q. H., Hu, X. F., & Liu, H., 2009. Estimating impervious surfaces using linear 652 

spectral mixture analysis with multitemporal aster images. International Journal of 653 

Remote Sensing, 30(18), 4807-4830. 654 

Weng, Q., 2012. Remote sensing of impervious surfaces in the urban areas: 655 

requirements, methods, and trends. Remote Sensing of Environment, 117(2), 34-49.  656 

Weng, Q., Hu, X. & Lu. D., 2008. Extracting impervious surfaces from medium 657 

spatial resolution multispectral and hyperspectral imagery: a comparison. 658 

International Journal of Remote Sensing, 29(11), 3209-3232. 659 

White, M. D., & Greer, K. A., 2006. The effects of watershed urbanization on the 660 

stream hydrology and riparian vegetation of los penasquitos creek, california. 661 

Landscape & Urban Planning, 74(2), 125-138. 662 

Wu, C., & Murray, A. T., 2003. Estimating impervious surface distribution by spectral 663 

mixture analysis. Remote Sensing of Environment, 84(4), 493-505. 664 

Wu, C., & Murray, A. T., 2005. A cokriging method for estimating population density 665 

in urban areas. Computers Environment & Urban Systems, 29(5), 558-579. 666 

Wu, C., 2004. Normalized spectral mixture analysis for monitoring urban composition 667 

using ETM+ imagery. Remote Sensing of Environment, 93(4), 480-492. 668 

Xian, G., Crane, M., & Su, J., 2007. An analysis of urban development and its 669 

environmental impact on the Tampa bay watershed. Journal of Environmental 670 

Management, 85(85), 965-76. 671 

Yang, F., Matsushita, B., & Fukushima, T., 2010. A pre-screened and normalized 672 

multiple endmember spectral mixture analysis for mapping impervious surface area in 673 

lake Kasumigaura basin, Japan. Isprs Journal of Photogrammetry & Remote Sensing, 674 

65(5), 479-490. 675 

Yang, J., & He, Y., 2017. Automated mapping of impervious surfaces in urban and 676 

suburban areas: linear spectral unmixing of high spatial resolution imagery. 677 

International Journal of Applied Earth Observation & Geoinformation, 54, 53-64. 678 

Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J., 2003. An approach 679 

for mapping large-area impervious surfaces: synergistic use of landsat-7 ETM+ and 680 

high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2), 230-240. 681 



23 
 

Yang, S., & Lunetta, R. S., 2011. Sub-pixel mapping of tree canopy, impervious 682 

surfaces, and cropland in the laurentian great lakes basin using MODIS time-series 683 

data. IEEE Journal of Selected Topics in Applied Earth Observations & Remote 684 

Sensing, 4(2), 336-347. 685 

Yang, X., & Liu, Z., 2005. Use of satellite-derived landscape imperviousness index to 686 

characterize urban spatial growth. Computers Environment & Urban Systems, 29(5), 687 

524-540. 688 

Yuan, F., & Bauer, M. E., 2007. Comparison of impervious surface area and 689 

normalized difference vegetation index as indicators of surface urban heat island 690 

effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375-386. 691 

Zhang, H., Lin, H., Li, Y., Zhang, Y., & Fang, C., 2016. Mapping urban impervious 692 

surface with dual-polarimetric SAR data: an improved method. Landscape & Urban 693 

Planning, 151, 55-63. 694 

Zhang, J., He, C., Zhou, Y., Zhu, S., & Shuai, G., 2014. Prior-knowledge-based 695 

spectral mixture analysis for impervious surface mapping. International Journal of 696 

Applied Earth Observation & Geoinformation, 28(5), 201-210. 697 

Zhang, L. X., Wang, J., Wang, X., & Zhao, J. P., 2007. Competency model of top 698 

managers of state-owned enterprise in china's northeastern old industrial base. Journal 699 

of Northeastern University, 28(4), 600-604. 700 

Zhang, Y., Zhang, H., & Lin, H., 2014. Improving the impervious surface estimation 701 

with combined use of optical and SAR remote sensing images. Remote Sensing of 702 

Environment, 141(2), 155-167. 703 

Zhou, Y., & Wang, Y. Q., 2008. Extraction of impervious surface areas from high 704 

spatial resolution imagery by multiple agent segmentation and classification. 705 

Photogrammetric Engineering & Remote Sensing, 74(7), 857-868. 706 

 707 


