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A nonlinear elasticity approach to modelling the collapse of a shelled microbubble
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There is considerable interest in using shelled microbubbles as a transportation mechanism for localized
drug delivery, specifically in the treatment of various cancers. In this paper a theoretical model is proposed
which predicts the dynamics of an oscillating shelled microbubble. A neo-Hookean, compressible strain
energy density function is used to model the potential energy per unit volume of the shell. The shell is
stressed by applying a series of small radially directed stress steps to the inner surface of the shell whilst
the outer surface is traction free. Once a certain radial deformation is reached, the stress load at the inner
radius is switched off causing the shell to collapse and oscillate about its equilibrium (stress free) position.
The inflated shell configuration is used as an initial condition to model the time evolving collapse phase of
the shell. The collapse phase is modelled by applying the momentum balance law and mass conservation.
The dynamical model which results is then used to predict the collapse time of the shelled microbubble
as it oscillates about its equilibrium position. A linear approximation is used in order to gain analytical
insight into both the quasistatic inflationary and the oscillating phases of the shelled microbubble. Results
from the linearized model are then analysed which show the influence of the shell’s thickness, Poisson
ratio and shear modulus on the rate of oscillation of the shelled microbubble. The nonlinear model
for the quasistatic state is solved numerically and compared to the linearized quasistatic solution. At
present, there is no solution to the nonlinear collapsed state. This is a future area of research for the
current authors.

1. Introduction

Premanufactured shelled microbubbles are currently licensed in the UK as ultrasound imaging contrast
agents (Narayan & Wheatley, 1999). Current research is focussing on using the microbubbles as a
transportation mechanism for localized drug delivery specifically in the treatment of various cancers
(Peregrino et al., 2013; Gourevich et al., 2015; Escoffre et al., 2013; Fan et al., 2013a; Yan et al., 2013;
Niu et al., 2013). Ultrasound contrast agents (UCAs) are shelled microbubbles typically composed of a
layer or several layers of a protein shell encapsulating a perfluoro gas that helps to stabilize the shelled
microbubble when it is injected into the bloodstream (Stride & Saffari, 2003; Cosgrove, 2006; Stride &
Coussios, 2010). The shelled microbubbles have a typical radius of between 1 and 4 μm allowing them
to propagate through the capillaries in the human body and a shell thickness that varies between 4 and
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100 nm depending on whether the UCA is a monolipid or polymer variant (McLaughlan et al., 2013).
A typical shear modulus value for a monolipid UCA is 20 MPa with a Poisson ratio of ν = 0.48 (Falou
et al., 2010; Sotiriou et al., 2014a). UCA’s resonate with typical frequencies in the range of 1 to 10
MHz producing nonlinear, multiple harmonic signals that enhance the quality of the medical imaging
process (Blomley et al., 2001). There has been a research momentum growing in recent years to use
the UCAs as localized drug delivery agents (Lentacker et al., 2009). This procedure aims to minimize
the pernicious side effects associated with current conventional chemotherapy treatments. It is worth
emphasising that there are competitor technologies being proposed and, for example, some studies have
focussed on exploiting the photothermal properties of gold and silver coated nanobubbles to kill the
cancer cells Sotiriou et al. (2014b). Much progress has been made but much remains to be done before
this can be deployed routinely in patients Dewitte et al. (2015). Hence there is a need to develop virtual
simulation tools to better understand the challenges Fan et al. (2013b). This paper contributes to this
effort by identifying how the material parameters of the shell influence the dynamics and collapse time
of the shelled microbubble. In this paper we define the collapse time to be the time taken for a stressed
shelled microbubble to collapse back to its stress free state.

Most current shelled microbubble models are based on the Rayleigh-Plesset equation for a free
gas microbubble, which is derived by applying pressure balances to the inner surface of the shelled
microbubble with those acting on the outside of the shelled microbubble’s surface and the surrounding
liquid. The Rayleigh-Plesset equation assumes that the shelled microbubble oscillations are purely
radial and that the surrounding liquid is incompressible Rayleigh (1917); Plesset (1949). The gas in
the shelled microbubble is assumed to behave adiabatically despite its polytropic index being relatively
close to one which is associated with isothermal behaviour Doinikov & Bouakaz (2011). The damping
contributors are the liquid viscosity that surrounds the shelled microbubble, thermal damping between
the gas and the surrounding liquid, and damping associated with liquid compressibility via the external
acoustic energy. The thermal damping can be accounted for by selecting the appropriate value for
the polytropic index (Doinikov & Bouakaz, 2011). The Rayleigh-Plesset equation can be modified
to take account of the compressible nature of the surrounding liquid (Doinikov & Bouakaz, 2011).
Marmottant et al. (2005) modelled lipid shelled microbubbles using a Rayleigh–Plesset equation; this
assumes that when the shelled microbubble oscillates, the elastic region holds only for a small range
of radii. However, this model is capable of describing nonlinear effects particularly the compression
only behaviour observed in the analysis of certain monolipid shelled microbubbles (Marmottant et al.,
2005). This work was the first to propose a model for the surface tension of the shell which varies
during various stages of its oscillatory motion. They achieved this by expressing the surface tension
as a piecewise function dependent on the shell’s area density with the shell experiencing a smaller
surface tension during contraction. This is due to the area per molecule decreasing during contraction
resulting in a smaller number of molecular interactions and therefore a smaller surface tension. Paul et
al. also used empirical means to develop a Rayleigh–Plesset model using an effective surface tension
that incorporated a dilatational elasticity term which was a function of the surface area change (Paul
et al., 2010). The dilatational elasticity term was modelled using both quadratic and exponential terms
with each approach giving similar results and predicting the subharmonic response with a reasonable
level of accuracy. Both of these approaches are empirical and rely heavily on experimental observations
for one particular type of UCA. Church developed a model for an encapsulated shelled microbubble
incorporating both the inner and outer radii and the interfacial surface tension (Church, 1995). Church
assumed that the incompressible encapsulated gas shelled microbubble was surrounded by an unbounded
incompressible liquid and experienced radial oscillations when it was subjected to an external acoustic
pressure. Church’s model uses two surface tension expressions; a surface tension for the outer shell/liquid
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interface and an interfacial surface tension between the shell’s inner radius and the gas layer. Church
exploited the Rayleigh–Plesset equation and assumed that the shell material behaved as a viscoelastic
solid obeying the Kelvin–Voigt constitutive equation (Church, 1995). Experimental evidence indicates
that the Church model is more suited to Albumin shelled microbubbles with shell thicknesses of the
order of 15–20 nm (Doinikov & Bouakaz, 2011). Doinikov & Dayton (2007) suggested a model for
lipid encapsulated microbubbles where the shell is treated as a viscoelastic fluid that obeys the Maxwell
constitutive equation. The Maxwell model developed by them helped to explain some of the experimental
data that contradicted previous assumptions that the lipid shell behaves as a viscoelastic solid. The
Maxwell model predicts that the resonance frequency of a shelled microbubble possessing a viscoelastic
fluid shell can have both higher and lower resonance frequencies than that of a free microbubble. This
depends on the choice of the shell parameters (Doinikov & Bouakaz, 2011; Doinikov & Dayton, 2007).
Doinikov et al. (2009) proposed a modification to their model where the shell’s viscous constant was
replaced by a function of the shell’s shear rate. They introduced this approach to attempt to solve the
dependency of the shell viscosity on the initial shelled microbubble’s radius (Doinikov & Dayton, 2007).
Despite numerous Rayleigh–Plesset models existing for UCAs, experimental observations have been
made that challenge the current, existing models. The experimental observations of compression only
behaviour for monolipid coated UCAs is highlighted by the asymmetrical oscillation curves that are
experimentally observed and that were subsequently modelled empirically by Marmottant et al. (2005)
who separated the shell elastic behaviour into three different regions. According to current models, the
shell’s material parameters such as viscosity and elasticity, display a dependency on the initial radius of
the shelled microbubble. However, large shelled microbubbles possess a greater mass and surface area
yet should still have the same viscosity and elasticity for the same type of material. This highlights a
current flaw in the modelling of the rheological properties of monolipid UCAs which clearly requires a
more fundamental and mathematically rigorous treatment (Doinikov & Bouakaz, 2011).

There currently exists very little literature pertaining specifically to UCA modelling using nonlinear
elasticity; which is a common approach for modelling large deformations of elastic materials and in
particular soft materials such as in biological settings (Gorb & Walton, 2010; Fung, 1990, 1993, 1996;
Holzapfel, 2000; Holzapfel & Ogden, 2004). There are however, numerous publications related to the
dynamics of spherical bodies using nonlinear elasticity (Lazopoulos & Ogden, 1999). A recent paper
by Efthymium and Tsiglifis uses constitutive laws from nonlinear elasticity alongside the Kelvin–Voigt
viscoelastic model to study the physical behaviour of various UCA types ranging from monolipids to
polymers (Efthymiou et al., 2012). They reported that the polymer based UCAs were consistent with
the neo-Hookean model whereas monolipid UCAs were consistent with the Mooney–Rivlin constitutive
law due to the presence of strain softening behaviour. Strain softening behaviour occurs due to the area
density of the monolipid decreasing as the material stretches radially outwards. This behaviour has been
observed in monolipids typically used in UCA shells such as Sonovue Doinikov & Bouakaz (2011) and
Tsiglifis & Pelekasis (2008).

This article will derive a new nonlinear elasticity model of a UCA to explore the role that the
shell material properties and stress have on the UCA’s dynamics. This article takes a novel approach
to modelling shelled microbubbles and is quite distinct from the previous literature such as Mar-
mottant et al. (2005) and Doinikov & Dayton (2007). A previous study by Moulton and Goriely
has highlighted how difficult it is to model the full collapse of an elastic shell (Moulton & Goriely,
2011). This study focusses on calculating a collapse rate rather than trying to totally collapse a shelled
microbubble. No previous study has focussed on the influence of the material parameters on the col-
lapse time of the shelled microbubble specifically in relation to the shell’s Poisson ratio and its shear
modulus.
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A neo-Hookean compressible strain energy density function is used to model the stress profiles
within the thin shell. An initial series of small stress steps are applied symmetrically at the inner radius
of the shell whilst the outer surface is traction free. Note that the applied stress at the inner radius is
not attempting to model the gas in the shelled microbubble. In order to study the collapse of the shelled
microbubble it has to be initiated with some non-equilibrium stress distribution. One way to achieve
this is to inflate a shelled microbubble from a stress free reference configuration. The quasistatic phase
describes this perturbation from its equilibrium state to a stressed state. This spherically symmetric
deformation is quasistatic in nature and is thus considered to be independent of time. The spatial profiles
for the Cauchy radial and hoop stresses within the shell will be used along with the conservation of mass
and energy to model the subsequent collapse of the shelled microbubble. In order to collapse the shell, the
applied stress at the inner radius is instantaneously switched off whilst the outer surface is traction free.
This causes the shell to collapse and oscillate about its stress free configuration. This leads to a simple
harmonic motion (SHM) description of the shelled microbubble dynamics where the collapse time can
be determined. Note that the collapse time is defined in this paper to be the time taken for the collapsing
shelled microbubble to first return to its reference (equilibrium) state. This is one quarter of the period
of oscillation of the shelled microbubble with the SHM motion arising due to a lack of damping in the
physical model. The nonlinear model for the quasistatic phase is solved numerically and compared and
contrasted with the linearized analytical solution. This comparison is of course conducted over a small
range of displacements, since this is what the linearized version is predicated upon, but future work
will explore the nonlinear behaviour of the model derived in this paper. However, the collapse phase
is solved for a linearized model and not the nonlinear model. The numerical solution of the nonlinear
collapse phase is considered beyond the scope of this article. The material parameters of the shell are
then adjusted to determine their influence on the time taken for the stressed shell to collapse back to
its stress free equilibrium position. It is important to realize that the nature of the strain energy density
function is only relevant to the nonlinear model for the quasistatic phase.

2. Modelling the quasistatic stressing of a shelled microbubble

Let us start by considering the reference configuration of a stress free, fully formed spherical shell with
an inner and outer radii of RI and RO, respectively. The current configuration is then an inflated spherical
shell which will possess a stress. Let the current configuration basis vectors be represented by er , eθ and
eφ . To distinguish between the reference and current vector fields, we employ an uppercase (G) for the
reference configuration and a lowercase (g) for the current configuration (Ogden, 1997). The stress is due
to a stress load that is applied to the interior surface of the shelled microbubble shell. A mixed tensorial
basis is used where the radial deformation is defined as χ = χigi and the gradient of the deformation F
is given by Ogden (1997)

F = ∇ ⊗ χ =
(

∂χi

∂Xj
+ χi

∂gi

∂Xj
· gi

)
gi ⊗ Gj. (1)

In spherical polar coordinates, the current configuration can be transformed into physical components
(Ogden (1997)) to give χ1 = χr , χ2 = rχθ , and χ3 = r sin θχφ . Using equation (1), we can determine
the gradient of the deformation defined by χ1 = r (R), and χ2 = χ3 = 0. Assuming θ (Θ) and φ (Φ),
the nonzero terms in equation (1) are, (∇ ⊗χ)rRer ⊗eR = r ′er ⊗eR, (∇ ⊗χ)θΘeθ ⊗eΘ = (rθ ′/R)eθ ⊗eΘ

and (∇ ⊗ χ)φΦeφ ⊗ eΦ = rφ′ sin θ/(R sin Θ)eφ ⊗ eφ (see Cowley et al., 2015). If we assume that the
shell material is hyperelastic then there exists a strain energy density function expressing the potential
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energy per unit volume. We will use a neo-Hookean strain energy density function (Holzapfel, 2000;
Gorb & Walton, 2010; Gou et al., 2012), W(F), which includes a compressible term that is used to
model the change in volume of the shelled microbubble as it is inflated. The determinant of F, gives
a measure of how the volume of the spherical shell changes as it maps from the stress free, reference
configuration to the stressed, current configuration. This determinant is denoted by J and if we further
assume that θ = Θ and φ = Φ then

J = r′r2

R2
. (2)

A compressible, neo-Hookean (Gorb & Walton, 2010) strain energy density function is used to model
the potential energy per unit volume of the shell. Previous studies by Tsiglifis & Pelekasis (2008) and
Efthymiou et al. (2012) show that thick shelled ultrasound contrast agents (thicknesses of the order
of 15nm and above) can be modelled by using a neo-Hookean strain energy density function whereas
monolipid shells (thicknesses of the order of 4nm) are consistent with a Mooney–Rivlin strain energy
density function. This study will focus on shell thicknesses between 20 and 50 nm which will be described
via a compressible, neo-Hookean strain energy density function. Using a neo-Hookean strain energy
density function has the added advantage of being among the simplest of nonlinear models to study.
Nonlinear elasticity can account for large scale deformations and has been used in numerous studies
pertaining to modelling rubber mediums and soft tissue (Gorb & Walton, 2010; Daniel et al., 2010).
Experimental studies (Falou et al., 2010; Tu et al., 2009) have shown that the Poisson ratio of a typical
ultrasound contrast agent is between 0.48 and 0.49 which is similar to rubber. The common approach
to modelling rubber for moderate strains is to utilize nonlinear strain energy density functions which
are either neo-Hookean or Mooney-Rivlin (De Pascalis et al., 2013). The key reason for introducing
a compressible, third invariant is to account for the material parameter described by Poisson’s ratio
and to identify how this parameter influences the collapse time of the shell whereas a neo-Hookean or
Mooney–Rivlin strain energy density function only utilizes the shear modulus (De Pascalis et al., 2013).
The compressible neo-Hookean strain energy density function is (Gorb & Walton, 2010)

W(F) = μ

2

(
tr(FFT ) − 3

)+ μ

2β

(
J−2β − 1

)
, (3)

where FFT is the left Cauchy–Green deformation tensor (Holzapfel, 2000), μ is the shear modulus, ν is
Poisson’s ratio and β = ν/(1 − 2ν). The stresses can be described using the first Piola–Kirchhoff stress
tensor, relating the force in the current configuration to the area in the reference configuration (Gorb &
Walton, 2010). On the other hand, the Cauchy stresses relate the force in the current configuration to
the area in the current configuration. The first Piola–Kirchhoff stress tensor, S(F), is then

S(F) = μ
(−J−2βF−T + F

)
. (4)

Substituting equation (1) into equation (4) gives

S = μ

(
−J−2β 1

r ′ + r ′
)

er ⊗ eR + μ

(
−J−2β R

r
+ r

R

)
eθ ⊗ eΘ (5)

+ μ

(
−J−2β R

r
+ r

R

)
eφ ⊗ eΦ . (6)
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For the quasistatic solution of a stressed sphere the divergence of the first Piola–Kirchhoff stress tensor
will be equal to zero. This is because the quasistatic deformation is independent of time which results in
the Cauchy momentum equating to zero. To determine ∇ ·S = 0, we need to be able to relate the physical
coordinates for the mixed tensorial basis to the general basis vectors represented by the components
gi and Gi where i ∈ {1, 2, 3}. The first Piola–Kirchhoff stress tensor is represented by Ogden (1997),
S = S j

i gi ⊗ Gj where S j
i are the left-covariant components of S. Converting into physical coordinates

gives

S 1
1 = SrR = μ

(
−J−2β 1

r ′ + r ′
)

, (7)

S 2
2 = r

R
SθΘ = μ

(
−J−2β + r2

R2

)
(8)

and

S 3
3 = r

R
SφΦ = μ

(
−J−2β + r2

R2

)
. (9)

Calculating the divergence of S gives the following radial and angular equations

∂S 1
1

∂R
+ 2S 1

1

R
− 1

r

(
S 2

2 + S 3
3

) = 0, (10)

and,
S 2

2 cot Θ

r
− S 3

3 cot θ

r
= 0. (11)

If we further assume that the deformation is purely radial then θ = Θ , resulting in S 2
2 = S 3

3 . Equation
(10) is the same as the model in Daniel et al. (2010) and the relationship S 2

2 = S 3
3 is because we

have a spherically symmetric, purely radial deformation. This implies that both the polar and azimuthal
stresses have the same dependency on the radial deformation. To formulate the Cauchy stresses, the
radial differential equation (10) has to be rewritten in terms of the physical coordinates. Using equation
(10) and rearranging, gives

r ′′ ((r ′)2J2β + 1 + 2β
) =

(
4βr ′

R
− 4β(r ′)2

r
+ 2r ′

R
− 2(r ′)2

r

)
+ J2β

(
2r(r ′)2

R2
− 2(r ′)3

R

)
. (12)

To determine the Cauchy radial and hoop stresses, equation (12) is solved for the inner surface of the
shell being subjected to a load stress, p, and the outer shell surface is traction free. At R = RI (the inner
radius), this inner boundary condition is SrReR = −pJF−T · eR = −pr2/R2eR, and so, from equations (2)
and (7)

μ

(
r ′r2

R2

)−2β

− pr2r ′

R2
− μ(r ′)2 = 0. (13)
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Calculating the boundary condition for the outer shell’s radius R = RO gives, SrR = 0, and so

r ′ =
(

R

r

)2β/(β+1)

. (14)

Equation (12) can now be solved subject to the boundary conditions given by equations (13) and (14).
The Cauchy stresses represented by τ Holzapfel (2000) are then obtained from the first Piola–Kirchhoff
stress tensor via τ = SFT/J . The radial and hoop stresses are then evaluated using equation (6), to give

τrr = μ

J

(−J−2β + (r ′)2
)
, (15)

τθθ = μ

J

(
−J−2β +

( r

R

)2
)

(16)

and, τφφ = μ

J

(
−J−2β +

( r

R

)2
)

. (17)

2.1. Nondimensionalization and linearization of the inflationary model

Nondimensionalization is used to assist in solving the quasistatic and collapse phases of the shelled
microbubble. This is achieved by using the reference configuration’s inner radius, RI . This leads to
Y = R/RI and y(Y) = r(R)/RI where YI = RI/RI = 1 and YO = RO/RI . This results in

y′′
(

(y′)2

(
y′y2

Y 2

)2β

+ 1 + 2β

)
=
(

4βy′

Y
− 4β(y′)2

y
+ 2y′

Y
− 2(y′)2

y

)

+
(

y′y2

Y 2

)2β (2y(y′)2

Y 2
− 2(y′)3

Y

)
. (18)

Nondimensionalizing the boundary condition at the inner radius given by equation (13) and rearranging
gives

(
y2(1)y′(Y)

∣∣∣Y=1

)−2β − p̂
(

y2(1)y′(Y)

∣∣∣Y=1

)
− (y′(Y)

∣∣∣Y=1)
2 = 0, (19)

where p̂ = p/μ. Similarly, nondimensionalizing the boundary condition at the outer radius represented
by equation (14) leads to

y′(Y)

∣∣∣Y=YO =
(

YO

y(YO)

)2β/(β+1)

. (20)

Nondimensionalising the Cauchy stresses given by equations (15)–(17) results in

τ̂yy = τyy

μ
= Y 2

y′(Y)y(Y)2

(
−
(

y′(Y)y(Y)2

Y 2

)−2β

+ y′(Y)2

)
, (21)
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τ̂θθ = τθθ

μ
= Y 2

y′(Y)y(Y)2

(
−
(

y′(Y)y(Y)2

Y 2

)−2β

+
(

y(Y)

Y

)2
)

(22)

and, τ̂φφ = τφφ

μ
= Y 2

y′(Y)y(Y)2

(
−
(

y′(Y)y(Y)2

Y 2

)−2β

+
(

y(Y)

Y

)2
)

. (23)

To afford some analytical insight, equation (18) is linearized using

y(Y) = Y + p̂f (Y), (24)

where 0 < p̂ << 1. Equation (24) assumes that the displacement y(Y) in the current configuration
for the quasistatic phase, is perturbed by a very small amount which is denoted by p̂f (Y) where p̂ is
a nondimensionalized parameter and is expressed in terms of the applied stress load p and the shear
modulus μ. f (Y) denotes a function of Y , the independent variable in the reference configuration, and is
related to the difference between the displacement in the current and reference configurations. The use
of this is justified if all the stress components developed throughout the body are small in comparison
with the shear modulus of the shell. Typical imaging pressures are of the order of p = 200 kPa whereas
the shear modulus of a monolipid is μ = 20MPa resulting in p/μ = 0.01 (Marmottant et al., 2005).
Substituting equation (24) into equation (18) results in the leading order equation

Y 2f ′′ + 2Yf ′ − 2f = 0. (25)

This can be solved to give

y(Y) = Y + p̂

(
A

Y 2
+ BY

)
, (26)

where f (Y) = A/Y 2 + BY and A and B are constants determined using the boundary conditions repre-
sented by equations (13) and (14). The linearized boundary conditions give expressions for the parameters
A and B, and the radial deformation y(Y) is then approximated by

y(Y) = Y + p̂

(
Y 3

O

Y 2
(
4Y 3

O − 4
) + Y

(6β + 2)Y 3
O − (6β + 2)

)
. (27)

Using this solution and linearising the expressions for the Cauchy stresses gives the approximations

τ̂yy = p̂

(
Y 3 − Y 3

O

Y 3
(
Y 3

O − 1
)
)

, (28)

and, τ̂θθ = p̂

(
Y 3

O

Y 3
(
2Y 3

O − 2
) + 1

Y 3
O − 1

)
. (29)
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3. Linearization of the time evolving collapse phase of the shell

Applying the momentum balance law where ρo denotes the density in the reference configuration, v
represents the velocity and t denotes the time, gives

ρo
Dv

Dt
= ∇R · S, (30)

where the radial component of the material derivative is given by Dvr/Dt = ∂vr/∂t + (v ·∇r)vr −v2
θ /r −

v2
φ/r (Ogden, 1997, pp. 143–145). Writing equation (30) in terms of the Cauchy stress leads to

ρoJ
Dv

Dt
= ∇r · τ (31)

where v = vrer , vφ = 0 and vθ = 0 (radial dependency only) (Acheson, 1990, pp. 354–355). To
collapse the shell a change in the boundary conditions has to be applied at the inner radius of the shell.
In the inflationary picture there is a stress applied at the inner radius, directed radially outwards, but to
collapse the shell the stress at the inner radius is traction free. The right hand side of equation (31) is
given by

∇r · τ =
(

∂τrr

∂r
+ 2

r
(τrr − τθθ )

)
er , (32)

where τrr and τθθ are given by equations (15) and (16). For vr = ∂r/∂t, the term r denotes the position
of a material particle which can be written as r = r̂(t; R). Using the chain rule

∂

∂r

(
∂r

∂t

)
≡ ∂

∂r

(
∂ r̂

∂t

)
= ∂R

∂r

∂2r̂

∂R∂t
. (33)

Equation (31) can be rewritten as

ρoJ

(
∂2r

∂t2
+ ∂r

∂t

∂R

∂r

∂2r̂

∂R∂t

)
er = ∇r · τ . (34)

To nondimensionalize time we use t = γ t̂ and set γ = √
ρoR2

I /μ which leads to the nondimensionalized
momentum balance

y2

Y 2

(
∂y

∂Y

)(
∂2y

∂ t̂2
+ ∂y

∂ t̂

∂Y

∂y

∂2ŷ

∂Y∂ t̂

)
= (2β + 1)J−2β−1

(
2

y
+ ∂2y

∂Y 2

(
∂Y

∂y

)2

− 2

Y

(
∂Y

∂y

))

+ 1

J

(
∂2y

∂Y 2
+ 2

Y

(
∂y

∂Y

)
− 2y

Y 2

)
. (35)

Applying the boundary conditions at the inner and outer radii which is traction free such that τyy(YI/O) = 0
gives

∂y

∂Y

∣∣∣(1,t̂) = (
y
(
1, t̂
))−2β/(β+1)

(36)
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and

∂y

∂Y

∣∣∣(YO ,t̂) =
(

y
(
YO, t̂

)
YO

)−2β/(β+1)

, (37)

where the nondimensionalized initial conditions are given by the inflated solution

y(Y , 0) = Y + p̂f (Y) (38)

and

∂y

∂ t̂

∣∣∣(Y ,0) = 0. (39)

Linearization is performed once again where

y = Y + p̂g(Y , t̂). (40)

Linearizing (35) gives

∂2g

∂ t̂2
= (2β + 2)

∂2g

∂Y 2
+ (4β + 4)

Y

(
∂g

∂Y

)
− (4β + 4)g

Y 2
. (41)

The initial conditions are given by

g(Y , 0) = f (Y) (42)

and

∂g

∂ t̂

∣∣∣(Y ,0) = 0 (43)

with boundary conditions that are stress free at both the inner and outer radius given by

∂g

∂Y

∣∣∣(1,t̂) + 2β

(β + 1)
g(1, t̂) = 0 (44)

and

∂g

∂Y

∣∣∣(YO ,t̂) + 2β

(β + 1)

g(YO, t̂)

YO
= 0. (45)

Applying a Laplace transform to equation (41) and applying the initial conditions leads to

(2β + 2)

(
d2G

dY 2
+ 2

Y

dG

dY
− 2G

Y 2

)
= s2G(Y , s) − sf (Y), (46)
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where G(Y , s) = ∫∞
0 g(Y , t̂)e−st̂dt̂. Setting α2 = 1/(2β + 2) results in

Y 2 d2G

dY 2
+ 2Y

dG

dY
− (

2 + α2Y 2s2
)

G = −α2Y 2sf (Y). (47)

Consider first the case when s = 0. Here equation (47) becomes

Y 2 d2G

dY 2
+ 2Y

dG

dY
− 2G = 0, (48)

which has solution G(Y , 0) = E/Y 2 + FY , where E, F ∈ R. The Laplace transformed boundary
conditions arising from equations (44) and (45) result in E = F = 0. Hence the solution pertaining to
the case s = 0 is the trivial solution G(Y , 0) = 0. From now on we consider the case when s 	= 0. The
homogeneous equation has the solution

G(Y , s)Hom = A(s)i1(αsY) + B(s)k1(αsY), (49)

where i1(αsY) is the modified spherical Bessel function of the first kind of order one and k1(αsY) is the
modified spherical Bessel function of the second kind of order one (Abramovitz & Stegun, 1972, pp.
443–445) and (Arfken, 1985, pp. 633–634). The modified spherical Bessel functions can be written in
terms of more familiar functions as

i1 = x cosh x − sinh x

x2
,

k1 = e−x (x + 1)

x2
.

The particular integral solution is

GPI = f (Y)

s
, (50)

since f (y) satisfies equation (25). The general solution is then given by

G(Y , s) = A(s)i1(αsY) + B(s)k1(αsY) + f (Y)

s
. (51)

Taking the Laplace transform of the stress free boundary conditions given by equations (44) and (45)
and substituting equation (51) into the Laplace transforms of (44) and (45) gives

A(s)

(
∂i1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β + 1)
i1(αs)

)
+ B(s)

(
∂k1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β + 1)
k1(αs)

)

+ 1

s

(
∂f (Y)

∂Y

∣∣∣
Y=1

+ 2β

(β + 1)
f (1)

)
= 0 (52)
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and

A(s)

(
∂i1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

i1(αsYO)

YO

)
+ B(s)

(
∂k1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

k1(αsYO)

YO

)

+ 1

s

(
∂f (Y)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

f (YO)

YO

)
= 0. (53)

We can write equations (52) and (53) as the matrix equation

M(s)

(
A(s)
B(s)

)
=
( 1

s(2β+2)

0

)
,

where

M(s) =
⎛
⎝ ∂i1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β+1)

i1(αs)
YI

∂k1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β+1)
k1(αs)

∂i1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β+1)

i1(αsYO)

YO

∂k1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β+1)

k1(αsYO)

YO

⎞
⎠. (54)

Equation (54) leads to

A(s) = 1

det(M)

(
1

s(2β + 2)

)(
∂k1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

k1(αsYO)

YO

)
(55)

and

B(s) = 1

det(M)

( −1

s(2β + 2)

)(
∂i1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

i1(αsYO)

YO

)
, (56)

where the determinant is given by

det(M) =
(

∂i1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β + 1)

i1(αs)

YI

)(
∂k1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

k1(αsYO)

YO

)

−
(

∂k1(αsY)

∂Y

∣∣∣
Y=1

+ 2β

(β + 1)
k1(αs)

)(
∂i1(αsY)

∂Y

∣∣∣
Y=YO

+ 2β

(β + 1)

i1(αsYO)

YO

)
. (57)

The physical system becomes singular when the determinant given by equation (57) is equal to zero i.e.
det(M) = 0. This corresponds to the poles of the integrand in the inverse Laplace transform formulation.
The location of the poles in the complex plane can be empirically observed by producing numerical plots
of det(M(s)) where s = x + iω, over a range of material parameter sets. The poles ωj were identified
numerically using FindRoot in Mathematica (Wolfram Research Inc., 2016) which uses the Newton
method to identify roots. The residuals were also evaluated numerically using NResidue in Mathematica
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(Wolfram Research Inc., 2016) for a range of β and YO values. The general form of the solution is given
by

g(Y , t̂) =
∞∑

n=1

An(Y) e±iωnt̂ , (58)

which simplifies to

g(Y , t̂) =
∞∑

n=1

2An(Y) cos(ωnt̂), (59)

where An(Y) denotes the amplitude of each residual whose pole is given by s = ±iωn where equation
(59) is a Fourier series. The amplitudes for higher harmonics are very small in comparison to A1. Hence
the collapse time is dominated by the first angular frequency ω1. Every component in expression (59)
independently satisfies the boundary conditions given by equations (44) and (45). The collapse time t̂∗,
which is the time taken for the stressed shell to collapse to its stress free state, is therefore given by
t̂∗ = π/(2ω1).

4. Results for the inflationary phase of the shelled microbubble

By numerically solving the nonlinear inflating shelled microbubble equations given by equations (18)–
(20) for different stress loads (p̂) applied to the inner surface of the shelled microbubble, the effect on
the shell deformation can be determined. Equations (18)–(20) were solved numerically using an in-built
solver in Mathematica using the shooting method (Wolfram Research Inc., 2016). Figure 1 shows the
effect on the radial deformation of the shelled microbubble for a series of stress loads with shelled

Fig. 1. Graph of the nondimensionalized radial deformation versus the nondimensionalized reference configuration’s radial coor-
dinates for different stress loads p̂ = 0, 0.001, 0.002, ..., 0.01 where ν = 0.48, β = 12 and the initial thickness is YO −YI = 0.02.
The nonlinear model is calculated by numerically integrating equation (18) subject to the boundary conditions given by equations
(19) and (20). The linearized model is calculated using equation (27).
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Fig. 2. Graph of the nondimensionalized Cauchy radial stresses against the nondimensionalized radial deformation for different
internal stress loads p̂ = 0, 0.001, 0.002, ..., 0.01 where ν = 0.48, β = 12 and initial thickness YO − YI = 0.02. The nonlinear
model is calculated by numerically integrating equations (18) and (21) subject to the boundary conditions given by equations (19)
and (20). The linearized model is calculated using equation (28).

microbubbles of initial thickness YO − YI = 0.02. Figure 1 shows that both the nonlinear and linearized
models are approximately linear with respect to Y with the nonlinear model displaying a slightly larger
radial deformation. For this choice of parameters, the linearized model is valid up to p̂ ≈ 0.003. It
transpires that decreasing the shell’s thickness from YO − 1 = 0.2 to YO − 1 = 0.02 results in a greater
radial deformation for the shelled microbubbles. This greater radial deformation is due to thinner shells
requiring a greater strain in order to achieve the stresses required to balance with the applied stress load.
Note that when no stress load is applied (p̂ = 0) then y(Y) = Y which is the trivial solution satisfying
equations (18) to (20) as y(1) = 1, y′(Y) = 1 and y(YO) = YO. Figure 2 illustrates the behaviour of the
nondimensionalized Cauchy radial stresses for the spherical inflation of a shelled microbubble of initial
thickness YO − 1 = 0.02. Each curve arises from a specific stress load applied to the inner surface of
the shell. The negative values imply that the shell is being compressed as the stress load increases. The
compressive nature is a consequence of the shell becoming thinner. It can also be seen that the largest
compression occurs at the inner surface of the spherical shell. The gradients of the curves are positive
and increase in magnitude as the stress load increases. Note that the Cauchy radial stress at the inner
radius is equal in magnitude to the applied stress steps that are applied to the inner radius of the shelled
microbubble. Figure 2 shows that both the nonlinear and linearized models are approximately linear
with respect to y with the nonlinear model experiencing a slightly larger radial deformation. Figure 3
shows the nondimensionalized Cauchy hoop stress τ̂θθ for an initial shell thickness of YO − YI = 0.02;
the positive values indicating a stretching behaviour. As the thickness of the shell reduces the size of
the Cauchy hoop stress increases along with the radial deformation of the shelled microbubble. The
Cauchy hoop stress τθθ is equal in magnitude to τφφ due to the spherically directed nature of the radial
deformation. There is a significant increase in the magnitude of the Cauchy hoop stresses in comparison
to the Cauchy radial stresses, indicating that the hoop stresses play a dominant role in the collapse of the
shelled microbubble. The thinning down of the shell normal to the surface due to a compressive stress
and the stretching out of the shell tangential to the surface as a result of the positive hoop stresses, result
in the material particles that make up the shell at the inner radius experiencing greater tensions. Figure 3
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Fig. 3. Graph of the nondimensionalized Cauchy hoop stresses against their nondimensionalized radial deformation for different
internal stress loads p̂ = 0, 0.001, 0.002, ..., 0.01 where ν = 0.48, β = 12 and initial thickness YO − YI = 0.02. The nonlinear
model is calculated by numerically integrating equations (18) and (22) subject to the boundary conditions given by equations (19)
and (20). The linearized model is calculated using equation (29).

shows that both the nonlinear and linearized models are approximately linear with respect to y with the
nonlinear model experiencing a slightly larger radial deformation and hoop stress.

5. Results for the collapse phase of the shelled microbubble

Having produced results for the inflationary phase of the microbubble’s evolution, this can be used as an
initial condition to model the collapsing shell. The collapse is achieved by setting the boundary condition
on the inner surface of the shell to be stress free. Figure 4 plots g(Y , t̂) at the nondimensionalized inner
and outer radius of a collapsing shell versus the nondimensionalized time for an initial condition based
on an inflationary stress load that is 1% of the shear modulus of the shell (p̂ = 0.01). The resulting
nonlinear trend is a sinusoidal function with a collapse time, t̂∗ ≈ 0.47. There are no dissipative,
damping terms in the momentum balance law such as viscoelastic terms connected to the viscosity
of the shell and the surrounding fluid. Neglecting the fluid resistance results in a simple harmonic
behaviour with no resulting energy dissipation to the surrounding medium. Both the inner and outer
radius of the shell experience the same collapse time despite their radial deformations being different
with the inner radius experiencing a slightly larger radial deformation. Figure 5 highlights the nonlinear
relationship between the redimensionalized collapse time of the shell and the redimensionalized shear
modulus. The nondimensionalized angular collapse frequency is evaluated using equation (54) where
the nondimensionalized collapse time is given by t̂∗ = π/(2ω). We redimensionalize the collapse
time using t = γ t̂ where γ = √

ρoR2
I /μ. Figure 5 shows that as the shear modulus increases the

microbubble shells experience faster collapse times. Figure 6 shows the relationship between the collapse
time of the shell and the nondimensionalized original (stress free) thickness of the shell. Thinner shells
will strain more to balance the tensions that they are subjected to which will result in larger radial
deformations (this is for a fixed initial stress of p̂ = 0.01). The hoop stresses play a key role in the
collapse phase of the shell with thinner shells experiencing a larger hoop stress. Hence, despite thin shells
experiencing larger radial deformations, they also experience a significant increase in their hoop stresses.
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Fig. 4. Graph of g(Y , t̂) at the nondimensionalized inner and outer radius of a collapsing shell versus the nondimensionalized
time where ν = 0.48, β = 12, YI = 1 and μ = 1 and the initial thickness is YO − YI = 0.02. This is calculated using equations
(54) and (59).

Fig. 5. Graph of the redimensionalized collapse time of the shell versus the redimensionalized shear modulus where β = 12, ν =
0.48, and the initial stress free thickness is RO − RI = 0.02nm. The density of the shell ρo = 1100kgm−3 (Falou et al., 2010)
and its inner radius is RI = 1μm. Typical shear modulus values are within the range of μ = 20 → 100MPa (Falou et al., 2010;
Tu et al., 2009). The collapse time is calculated from the zeros of the determinant of the matrix M(s) in equation (54) and is

redimensionalized using t = γ t̂ where γ =
√

ρoR2
I /μ.
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Fig. 6. Graph of the nondimensionalized collapse time of the shell versus the nondimensionalized original thickness of the shell
where β = 12, ν = 0.48, and μ = 1. This is calculated from the zeros of the determinant of the matrix M(s) in equation (54).

Thinner shells also possess a smaller mass and it is the combination of the mass and the hoop stress
that must be considered when determining the collapse time. Figure 6 illustrates that thicker shells
have slightly longer collapse times despite their smaller radial deformations. Figure 7 highlights the
approximately linear relationship between the nondimensionalized collapse time and the Poisson ratio
for an initial stress of p̂ = 0.01. The Poisson ratio is the negative of the ratio of the transverse to axial
strain (Gorb & Walton, 2010) and so shells with smaller Poisson ratios will experience larger radial
deformations for a given fixed initial stress. This will result in a longer collapse time for smaller Poisson
ratios due to their larger radial deformation. Figure 7 illustrates how the collapse times are lower for a
higher Poisson ratio.

6. Conclusion

This article described an analytical and numerical approach to modelling the inflationary process of a
shelled microbubble via a quasistatic radially directed stress load applied to its inner surface. The full
nonlinear quasistatic equation was solved numerically using the shooting method and this solution was
compared to the linearized model. The stress load was switched off (a traction free boundary condition
was applied) and the time for the microbubble’s shell to collapse back down to its equilibrium position
was determined by applying the momentum balance law and the quasistatic phase’s inflated radial
deformation as an initial condition. It is important to recognize that the microbubble collapse does not
end once it has reached its stress free state but continues to oscillate about its stress free state indefinitely
due to the lack of viscous damping. Key material parameters such as the thickness of the shell, its
Poisson ratio and the shell’s shear modulus were varied to determine their influence on the collapse
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Fig. 7. Graph of the nondimensionalized collapse time of the shell versus the Poisson ratio of the shell’s material for an initial
nondimensionalized stress load of p̂ = 0.01 where μ = 1 and the initial stress thickness is YO − YI = 0.02. This is calculated
from the zeros of the determinant of the matrix M(s) in equation (54).

rate of the shell. A typical redimensionalized collapse time for a shelled microbubble of interior radius
1μm, a shell density of ρ = 1100kgm−3, a redimensionalized shear modulus of μ = 20 MPa and a
Poisson ratio of ν = 0.48, subjected to a redimensionalized stress load of p = 200 kPa, is of the order
t∗ = 0.47×√(ρoR2

I /μ) ≈ 3.5ns where t̂∗ = 0.47 is the nondimensionalized collapse time. Shells with a
larger shear modulus possessed faster collapse times. As the thickness of the shell increased the collapse
time of the shell increased in an approximately linear manner. Shells with a larger Poisson ratio had
smaller initial radial deformations and therefore exhibited faster collapse times. It would be extremely
advantageous to have a numerical solution for the nonlinear model to not only validate the linearized
model’s solution but also to enable us to extend this study into the regimes of higher, non-perturbative
stress loads. However, the development of a numerical solution for the nonlinear collapse model is a
formidable challenge and is a possible area for future study. Current literature pertaining to shelled
microbubble dynamics focusses on the forcing of gas loaded shells via an external pressure load such
as an ultrasound signal. Studies such as Church (1995), Marmottant et al. (2005), Paul et al. (2010),
Doinikov & Bouakaz (2011), Doinikov & Dayton (2007) and Doinikov et al. (2009) do not consider
the effects of varying material parameters of the thin shell specifically its Poisson ratio and its shear
modulus. Our model highlights the very small dependency between the collapse time and the thickness
of the shell. Unfortunately, there is no relevant experimental data at present to support this model. Müller
& Stannarius (2009) consider a collapsing and unfolding shelled smectic A liquid crystal millibubble
which is collapsing as a consequence of the shell’s surface tension whereas the mechanism responsible
for the collapse of the shell in our model is the change in boundary conditions at the inner surface of the
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shell. Such a change in boundary conditions results in unloading at the inner shell’s surface and changes
the stress profiles within the shell. The main contributions of this study are (a) the nonlinear framework
which can be a template for investigating other shell materials by choosing appropriate strain energy
density functions (b) the nonlinear differential equation which models the quasistatic phase (no doubt
this has a rich structure and so can be studied for its large deformation behaviour), and (c) the qualitative
insight that it gives us into how the material parameters such as the shear modulus, the thickness of the
shell and the Poisson ratio influence the collapse time of the shell. Hopefully such models will aid soft
matter scientists’ understanding of UCA localized drug delivery and gene therapy. To improve on this
study, future work will consider the numerical solution for the nonlinear collapse model, the influence
of viscoelasticity and an external stress load applied to the outer surface of the shell.
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