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Abstract Scotch Whisky makes a significant contribution to
the UK’s food and drinks export. The flavour of this high quality
spirit is derived naturally from the whisky making process, with
smoky aromas being a key character of certain Scotch whiskies.
The level of smokiness is determined by the amount of phenolic
compounds in the spirit. Phenols are introduced by exposing the
barley malt to peat smoke during the kilning process. The cur-
rent techniques to determine the levels of phenols, such as High
Performance Liquid Chromatography (HPLC), are time consum-
ing as they require distillation of the malt prior to analysis. To
speed up this process and enable real-time detection before pro-
cessing, the possibilities of Near-infrared to Short-wave-infrared
(NIR-SWIR) Hyperspectral Imaging (HSI) to detect these phe-
nols directly on malted barley are explored. It can be shown
that via regression analysis, various levels of phenol concentra-
tion used as working levels for whisky production could be es-
timated to a satisfying degree. To further optimise industrial
application, a hyperspectral band selection algorithm is applied
that yields good results and reduces computational cost and may
open possibilities to employ multispectral rather than hyperspec-
tral cameras in future applications.
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1 Introduction

Over the last couple of years, an increasing interest in Hyperspectral
Imaging (HSI) for applications other than remote sensing can be ob-
served. Applications include e.g. food inspection [1], medical applica-
tions [2] and artwork inspection [3]. The main reason for its popularity
is its rapid data acquisition and the non-destructive nature of the same.
As opposed to regular spectroscopy techniques, data is acquired at a rel-
atively high frame rate incorporating not only spectral but also spatial
information. HSI is able to gain information about the chemical compo-
sition of the imaged objects without altering the integrity of the objects.
The potential as a non-destructive, real-time chemical analysis technique
stirs an increasing industrial interest in HSI as it can be seemlessly inte-
grated into the processing chain.

Scotch whisky is a high quality spirit drink exclusively produced in
Scotland in a manner specified by law. According to data collected by
the Scotch Whisky Association from January to December 2014, 99 mil-
lion cases of 12 40% vol. bottles were exported which made up around
a quarter of the UK food and drink exports [4]. These figures justify a
high interest in maintaining its high quality standards.

One distinct feature of certain Scotch Whiskies are their smoky char-
acteristics. Large parts of Scotland are covered by peat bogs. Dried
peat has a long history of being used as a fuel in Scotland. Exposing
malted barley that is used for whisky production during the kilning pro-
cess to the smoke of burning peat introduces the typical smoky aroma.
The smoking process can be seen in Figure 1.1. Phenolic compounds
in the smoke adhere to the surface of the grain and carry through the
process into the spirit. The phenol levels are used as a marker to the
degree of smokiness of whisky. The following eight phenolic compounds
can be found in scotch whisky. Phenol, Guaiacol, m/p-Cresol, o-Cresol,
4-Methyl-Guaiacol, 4-Ethyl Guaiacol and 4-Ethyl Phenol. The levels are
measured in mg/kg or ppm respectively and measured is the total num-
ber, i.e. the sum of the concentrations of the individual compounds.
Phenol levels are varied depending on desired smokiness. It is important
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(a) (b)

Figure 1.1: (a) Burning peat (b) Barley being exposed to peat smoke

from a flavour point of view to be able to control these levels, to avoid
having to blend final spirits to obtain the aroma required. Measuring the
levels of phenols in malt currently requires a pre-processing step. The
malted barley is finely ground, water added and then steam distilled.
The levels of phenols in the distillate are measured using High Perfor-
mance Liquid Chromatography (HPLC) or other colorimetric methods.
It would be of significant benefit to the whisky industry to be able to
determine the phenol levels directly in the malted barley, before any pro-
cessing has been applied.

Phenolic compounds in grapes have previously successfully been de-
tected by HSI [5]. This work aims to explore possibilities of determining
phenol levels in malted barley by means of Near-infrared to Short-wave-
infrared (NIR-SWIR) HSI in a potentially industry based application.
In addition to a detection before processing of the malt, HSI offers a
potential real-time detection of phenol levels, whereas HPLC needs at
least a couple of days in a lab to be performed. To show this, the follow-
ing things are explored in this study: By means of HSI and multivariate
data analysis, it is attempted to determine different levels of phenol con-
centration in barley malt. To further optimise the process for industrial
application, a band selection algorithm is evaluated for suitability on this
data that enables faster processing and multispectral data acquisition in
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future applications.

2 Sample preparation and data acquisition

As mentioned above, the peatiness of the barley is measured in ppm.
This study looked initially at difference between extreme samples; un-
peated malt with 0ppm phenols versus heavily peated malt containing
120-130ppm total phenols. The desired working levels for the actual
whisky production ranges from 0 to about 50ppm where these levels are
usually divided into three classes as follows:

1. Lightly peated: 1 - 5ppm

2. Medium peated: 6 - 15ppm

3. Heavily peated: 16 - 50ppm

These levels are created by mixing unpeated barley malt with the very
heavily peated to equivalent parts. The concentration of the very heavily
peated malt is determined by HPLC. Where HPLC measures the average
concentration of phenols in a batch of barley grains, HSI can only measure
spectra on various spatial points. As seen in Figure 1.1, the barley is
spread out in a large pool and smoked from below and each individual
grain is exopsed to the smoke to a different degree. The amount of
phenols that adhere to the surface also vary within one grain depending
on its orientation and batches with a low amount of phenols only include
very little grains with phenols on the surface. This needs to be considered
when measuring the concentration with an imaging device as only the
surface of the grains can be measured.
For initial tests of detectability, a batch of grains with no phenols and
barley with a concentration of about 120ppm have been produced and
imaged. Three different batches of barley with 3, 12 and 30ppm have then
been created to cover the three working levels of phenols. The barley has
been placed in a tray as seen in Figure 1.2 and imaged with a pushbroom
NIR-SWIR HSI camera. The camera has a spectral range of 900 - 1700
nm and scans 320 pixels with 256 bands per line. The samples have been
illuminated with two halogen lightbulbs on each side which have been
diffused to minimise specular reflections and shadows. However, due to
the curved surface of the grains, differences in intensity and different
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spectral reflections cannot be completely avoided. Six different samples
of each level have been imaged. Since the measured phenols will most
likely vary strongly between the pixels, the mean of subsets of all pixels
per sample was taken. The subsets consist of randomly selected pixels
within each samples to avoid localised effects of phenol accumulation or
absence. 50 subsets per sample have been generated, resulting in 300
observations per phenol level.

3 Spectral pre-processing

To compensate for variations in the lighting between different samples
and spatial variations along the scanned line, the raw measured signal
S can be calibrated and converted to percent reflectance spectra R with
the following formula, shown in [6]:

R =
S−D

W −D
× 100% (1.1)

D is a dark current image acquired by minimising the camera’s sensor
exposure to any radiation. This is to estimate the sensor’s shot noise.
W is a white reference imaged acquired by imaging e.g. a Spectralon
plaque which exposes almost lambertian scattering over the desired spec-
tral range. This helps to approximate the maximum reflectance measured
at each wavelength.

A number of spectral pre-processing techniques have been analysed
in [7] for NIR spectra including various techniques for de-noising [8].
Most popular ones include conversion to Standard Normal Variate (SNV)
and 1st and 2nd derivatives using Savitzky-Golay filters. SNV transforms
the data to zero mean and unit variance. This removes an additive base-
line and can in theory be used to compensate for slight intensity varia-
tions due to shadow effects on uneven surfaces and compensate for scat-
tering effects [7]. In practice however, no general optimal pre-processing
procedure can be established and most researchers try various combina-
tions and use the ones that yield the best results for the specific appli-
cation. In this case, pre-treatment with SNV yielded the best regression
results, as is later shown in Section 5. The SNV of a reflectance spectrum
R is defined as follows:

RSNV =
R− µ

σ
(1.2)
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where µ represents the mean and σ the standard deviation of all mea-
sured spectra.

4 Band selection

One major disadvantage of hyperspectral data is its high dimensionality.
While it is often desired to maintain a relatively high spatial resolution
for optimal identification of the measured objects, the spectral informa-
tion can in most cases be reduced. Hyperspectral cameras cover a wide,
continuous range of spectral bands but in many applications, only cer-
tain wavelengths are of particular interest. Additonally, adjacent bands
usually carry redundant information and the well known curse of dimen-
sionality may even decrease the discriminability if too many bands are
included. Different feature extraction techniques [9–11], predominantly
Principal Component Analysis (PCA) and variations [12] have widely
been successfully applied to hyperspectral data to reduce the dimension-
ality. The disadvantage of feature extraction however is that new features
are generated by e.g linearly combining spectral bands and the result-
ing features are no longer physically interpretable and linked to specific
chemical properties of the imaged objects.

Various feature selection techniques have been developed over the last
decades [13] that try to select an optimal subset of features for a specific
application. In [14] a new unsupervised band selection algorithm for
hyperspectral images is introduced. Based on information theory, the
following criterion is defined to evaluate the fitness of a selected subset
of features:

max

 s∑
m=1

H(Xim) − 2

s− 1

∑
1≤m1<m2≤s

I(Xim1
;Xim2

)

 (1.3)

where s is the number of desired features, H(Xim) the entropy of the mth
feature in the subset Xi and I(Xim1

;Xim2
) the mutual information be-

tween the two features. The criterion maximises the information carried
by each feature in the subset individually while minimising the redun-
dant information carried by the whole subset. The criterion is therefore
called Maximum-Information-Minimum-Redundancy (MIMR). To opti-
mise the maximisation function, an adapted version of the Clonal Selec-
tion Algorithm (CSA) is employed as a heuristic. As shown in [14], the
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MIMR-CSA algorithm outperforms state of the art algorithms in classifi-
cation applications for hyperspectral remote sensing data. Its suitability
for regression is to be tested here.

5 Data analysis and results

To visually inspect if there are any spectral differences in the NIR de-
tectable, three batches of unpeated malt and heavily peated barley with
a phenol concentration of about 120ppm have been imaged and the mean
spectra pre-processed with SNV have been plotted. This can be seen in
Figure 1.2. The spectra show a very similar shape but differ in intensity
in some spectral regions, especially in bands between 950 and 1120nm.
These differences are likely to be the result of slight shift into ”red” of
the peated barley. The smoked grains tend to be a bit more brown than
the unsmoked grains.

(a) (b)

Figure 1.2: (a) Barley samples. Unpeated grains are on the left column and
very heavily peated on the right (b) Spectra acquired by taking the mean over
all three samples of each class and applying SNV as pre-treatment

Support Vector machines have been applied successfully to HSI data
for classification in the past [15] and new techniques including multi-
kernel learning [16] and deep-learning based approaches [17] show that
there is more potential for improved algorithms. To estimate the phenol
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concentration, Support Vector Regression (SVR) has been applied. SVR
has been chosen as it has shown good results for regression analysis on
hyperspectral data in the past [18–20], is especially capable of handling
non-linearities within the data [21] and only needs a relatively small
training data set to deliver robust results [22]. A Radial Basis Function
kernel (RBF) has been used whose parameters have been tuned via grid
search. The goal here is not to determine the most effective regression
method but to prove the feasibility of phenol level estimation through
regression analysis. Although the division of phenol concentrations in
three levels would imply a classification approach, future applications
may include a more detailed estimation of the concentration rather than
grouping it in high, medium and low levels. Thus, it is to determine the
effectiveness of regression for this application.

To evaluate the regression results, the Coefficient of Determination
(r2) has been calculated as follows:

r2 = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)
(1.4)

where yi is the actual value, ŷi the predicted value, ȳi the mean of all orig-
inal values and n the number of samples. Additionally, the Root Mean
Squared Error (RMSE) has been calculated. A 20/80% training/testing
set has been used and split randomly. To compensate for statistic vari-
ations between the selected training sets, this process has been repeated
10 times. MIMR-CSA has been applied with an increasing number of
features starting from two to 256. MIMR-CSA has been applied three
times on each of those selected sets resulting in a total number of 30
repetitions per number of selected features. The results of the regression
can be seen in Figure 1.3.

6 Conclusion and future work

While it could be shown that some spectral differences between peated
and unpeated barley can be detected with NIR-SWIR HSI, it is not yet
clear if these differences derive from chemical absorption of the phenol,
from physical scattering or from colour differences. Scattering effects
have been tried to be minimised via spectral pre-processing. It could
be shown that the measured spectra of three different phenol levels can
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(a) (b)

Figure 1.3: Regression results with increasing amount of selected features for
phenol level prediction with SVR. (a) r2 values stabilise around a value of 0.77
(b) The RMSE stabilises around a value of around 5ppm

to a certain extent be detected via regression analysis. It is likely that
the differences detected are caused by colour information rather than
spectral absorption of the phenols, but this cannot be verified at this
stage. These three levels represent general working levels for whisky
production. A minimum RMSE of about 5ppm is still a relatively high
number considering the working range of the three classes. Additional
samples, especially in more levels of concentration in between the current
ones are likely to decrease this value. Applying a state-of-the-art band
selection algorithm for hyperspectral data on this dataset showed that
most information needed for regression lies in only about 75 of the 256
bands. This number is still too high for determining selected bands for
a multispectral camera, but the computational cost can be drastically
reduced. The presented results encourage us to put more work into the
phenol detection via HSI.
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