Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Gait phase classification for in-home gait assessment

Ye, Minxiang and Yang, Cheng and Stankovic, Vladimir and Stankovic, Lina and Cheng, Samuel (2017) Gait phase classification for in-home gait assessment. In: IEEE International Conference on Multimedia and Expo, 2017-07-10 - 2017-07-14, Harbour Grand Kowloon hotel. (In Press)

[img]
Preview
Text (Ye-etal-ICME-Gait-phase-classification-for-in-home-gait-assessment)
Ye_etal_ICME_Gait_phase_classification_for_in_home_gait_assessment.pdf - Accepted Author Manuscript

Download (2MB) | Preview

Abstract

With growing ageing population, acquiring joint measurements with sufficient accuracy for reliable gait assessment is essential. Additionally, the quality of gait analysis relies heavily on accurate feature selection and classification. Sensor-driven and one-camera optical motion capture systems are becoming increasingly popular in the scientific literature due to their portability and cost-efficacy. In this paper, we propose 12 gait parameters to characterise gait patterns and a novel gait-phase classifier, resulting in comparable classification performance with a state-of-the-art multi-sensor optical motion system. Furthermore, a novel multi-channel time series segmentation method is proposed that maximizes the temporal information of gait parameters improving the final classification success rate after gait event reconstruction. The validation, conducted over 126 experiments on 6 healthy volunteers and 9 stroke patients with handlabelled ground truth gait phases, demonstrates high gait classification accuracy.