Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A hybrid constraint integer programming approach to solve nurse scheduling problems

Rahimian, Erfan and Akartunali, Kerem and Levine, John (2015) A hybrid constraint integer programming approach to solve nurse scheduling problems. In: Mista 2015 Proceedings of the 7th Multidisciplinary International Scheduling Conference. Proceedings of the Multidisciplinary International Conference on Scheduling: Theory and Applications . MISTA, Prague, Czech Republic, pp. 429-442. ISBN 978-0954582104

[img]
Preview
Text (Rahimian-MISTA2015-Hybrid-constraint-integer-programming-approach)
Rahimian_MISTA2015_Hybrid_constraint_integer_programming_approach.pdf - Accepted Author Manuscript

Download (598kB) | Preview

Abstract

The Nurse Scheduling Problem can be simply defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some constraints and preferences. The inherent benefits of having higher-quality and more flexible schedules are a reduction in outsourcing costs and an increase of job satisfaction in health organizations. In this paper, we present a novel systematic hybrid algorithm, which combines Integer Programming (IP) and Constraint Programming (CP) to efficiently solve highly-constrained Nurse Scheduling Problems. Our focus is to exploit the problem-specific information to improve the performance of the algorithm, and therefore obtain high-quality solutions as well as strong lower bounds. We test our algorithm based on some real-world benchmark instances. Very competitive results are reported compared to the state-of-the-art algorithms from the recent literature, showing that the proposed algorithm is able to solve a wide variety of real-world instances with different complex structures.