Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Airborne broad-beam emitter from a capacitive transducer and a cylindrical structure

Guarato, F. and Barduchi de Lima, G. and Windmill, J.F.C. and Gachagan, A. (2016) Airborne broad-beam emitter from a capacitive transducer and a cylindrical structure. In: 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, Piscataway. ISBN 9781467398985

Text (Guarato-etal-IUS-2016-Airborne-broad-beam-emitter-from-a-capacitive-transducer)
Guarato_etal_IUS_2016_Airborne_broad_beam_emitter_from_a_capacitive_transducer.pdf - Accepted Author Manuscript

Download (248kB) | Preview


Beamwidth broadening of an ultrasonic air-coupled transducer is performed by an emitter constituted of an electrostatic transducer and of a cylinder with an opening at the top covering the surface of the transducer. The acoustic emission is thus forced through a hole smaller than the diameter of the transducer’s surface. In particular, a cylinder with an upper diameter of 10mm and a height of 5mm ensures the beam pattern of the final emitter is broad across a wide frequency range. Sound attenuation is reduced and lobes in the transducer’s beam pattern are cancelled. Beam broadening can improve range estimation techniques and ultrasonic sonar as a wider area can be inspected with one emission with no need for scanning.