Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Large circulant graphs of fixed diameter and arbitrary degree

Bevan, David and Erskine, Grahame and Lewis, Robert (2017) Large circulant graphs of fixed diameter and arbitrary degree. Ars Mathematica Contemporanea, 13 (2). 275–291. ISSN 1855-3966

[img]
Preview
Text (Bevan-etal-AMC-2017-Large-circulant-graphs-of-fixed-diameter-and-arbitrary-degree)
Bevan_etal_AMC_2017_Large_circulant_graphs_of_fixed_diameter_and_arbitrary_degree.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (434kB) | Preview

Abstract

We consider the degree-diameter problem for undirected and directed circulant graphs. To date, attempts to generate families of large circulant graphs of arbitrary degree for a given diameter have concentrated mainly on the diameter 2 case. We present a direct product construction yielding improved bounds for small diameters and introduce a new general technique for “stitching” together circulant graphs which enables us to improve the current best known asymptotic orders for every diameter. As an application, we use our constructions in the directed case to obtain upper bounds on the minimum size of a subset A of a cyclic group of order n such that the k-fold sumset kA is equal to the whole group. We also present a revised table of largest known circulant graphs of small degree and diameter.