Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Decomposition of refuelling signals to estimate channel bore profiles

West, Graeme M. and Wallace, Christopher J. and Mcarthur, Stephen D. J. and Coghlan, Michael (2012) Decomposition of refuelling signals to estimate channel bore profiles. In: Modelling and Measuring Reactor Core Graphite Properties and Performance. Royal Society of Chemistry, pp. 183-192. ISBN 9781849735179

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The fuel grab load trace (FGLT) generated during refuelling is a primary source of information relating to the structural health of the AGR cores. These refuelling events are routinely analysed and any anomalous behaviour reported at the station Monitoring Assessment Panel meetings. The FGLT is measure of the apparent weight of the fuel stringer as it travels through the graphite core. A number of components contribute to the measured weight, such as aerodynamic effects of coolant gas flow and friction caused by stabilising brushes on the fuel stringer interacting with the walls of the fuel channel. This paper describes a process for isolating each of these components from the FGLT. Separating out the effect of the lower stabilising brushes is particularly beneficial, as this provides a much improved representation of the channel bore, and thus characterisation of any underlying defects. This is valuable for detecting anomalies in regions of the core where the net effect of the upper and lower stabilising brushes results in masking of the graphite brick bore profile.