Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Synthesis and structural characterisation of 'solvent-free' lithium-calcium hexamethyldisilazide, [Li{mu-N(SiMe3)(2)}(2)Ca{N(SiMe3)(2)}], exhibiting a double ration of agostic H3C center dot center dot center dot Li and H3C center dot center dot center dot Ca intramolecular interactions

Kennedy, A.R. and Mulvey, R.E. and Rowlings, R.B. (2002) Synthesis and structural characterisation of 'solvent-free' lithium-calcium hexamethyldisilazide, [Li{mu-N(SiMe3)(2)}(2)Ca{N(SiMe3)(2)}], exhibiting a double ration of agostic H3C center dot center dot center dot Li and H3C center dot center dot center dot Ca intramolecular interactions. Journal of Organometallic Chemistry, 648 (1-2). pp. 288-292. ISSN 0022-328X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Addition of lithium hexamethyldisilazide to an equimolar amount of calcium bis(hexamethyldisilazide) in toluene gave 'solvent-free'. [Li{mu-N(SiMc(3))(2)}(2)Ca{N(SiMe3)(2)] (1). An X-ray study reveals a dinuclear arrangement based on a planar LiNCaN four-membered ring: both metals engage in additional H3C...M (where M = Lt. Ca) interactions with the mu-N(SiMe3)(2) substituents resulting in a distorted tetrahedral geometry at lithium and a distorted trigonal-bipyramidal geometry at calcium. This contrasts with the previously reported mixed Li-Mg analogue, [Li{mu-N(SiMe3)(2)}(2)Mg{N(SiMe3)(2)}], where only the lithium centre engages in such intramolecular agostic H3C...Li interactions.