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Abstract
In this paper, a general neutral stochastic functional differential equations with infinite
delay and Lévy jumps (NSFDEwLJs) is studied. We investigate the existence and
uniqueness of solutions to NSFDEwLJs at the phase space Cg under the local
Carathéodory type conditions. Meanwhile, we also give the exponential estimates
and almost surely asymptotic estimates of solutions to NSFDEwLJs.
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1 Introduction
Many dynamical systems depend not only on present and past states but also involve
derivatives with delays as well as the function itself. Deterministic neutral functional dif-
ferential equations (NFDEs) are often used to describe such systems. The theory of NFDEs
has been studied by many authors, e.g., Hale [, ]. Motivated by the chemical engineering
systems as well as the theory of aeroelasticity, Kolmanovskii and Myshkis [, ] introduced
the neutral stochastic functional differential equations (NSFDEs) and gave its applications
in chemical engineering and aeroelasticity. Since then, the theory of NSFDEs has attracted
more and more attention. For example, the existence, uniqueness, and stability of solutions
to NSFDEs can be found in [–]. Various efficient computational methods of NSFDEs
are obtained and their convergence and stability have been studied by many authors. One
can see Jiang [], Liu [], Mo [], Wu [], Wang [], Yu [], Zhou [], Zong [, ].

However, the global Lipschitz condition imposed on [, , , , , , , , ] is
seemed to be considerably strong when one discusses variable applications in real world.
For instance, Cox [] proposed the Cox-Ingersoll-Ross process for describing the short-
term interest rates

dx(t) = k
[
λ – x(t)

]
dt + θ

√
x(t) dw(t), x() = x, (.)

where k,λ ≥ , θ >  and x > . w(t) is a one-dimensional Brownian motion. It is well
known that the diffusion coefficient of equation (.) is not globally Lipschitz. In this case,
it is necessary for us to find other conditions to replace the Lipschitz condition. In the
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past few decades, many people have paid much attention to the existence, uniqueness
of stochastic differential systems under some weaker conditions (see [–]). Different
from the global Lipschitz condition, the non-Lipschitz condition is a much weaker suffi-
cient condition with a wider range of applications. Very recently, this condition was inves-
tigated by many scholars to study the existence and uniqueness of NSFDEs. For example,
Ren [, ] extended the result of [] and derived the existence and uniqueness of the
solution to NSFDEs at the phase space BC((–∞, ]; Rd) under non-Lipschitz conditions
in []; Bao [] established the existence and uniqueness theorem of mild solutions to
a class of stochastic neutral partial functional differential equations under non-Lipschitz
conditions; Boufoussi [] and Luo [] studied the existence and uniqueness of mild so-
lutions to neutral stochastic partial differential equations with jumps and non-Lipschitz
coefficients, respectively; In addition, Ren [] and Wei [] extended the phase space
BC((–∞, ]; Rd) of [, ] to the phase space B and Cg , they obtained the existence and
uniqueness theorem of solutions to NSFDEs under non-Lipschitz conditions.

Motivated by the aforementioned work, in this paper we aim to study the existence and
uniqueness of solutions to NSFDEs with infinite delay and Lévy jumps at the phase space
Cg which is proposed by []. Meantime, we establish the exponential estimates and al-
most surely asymptotic estimates of solutions to NSFDEs with infinite delay and Lévy
jumps under non-linear growth conditions. Unlike the condition imposed by Wei [],
we prove that equation (.) has a unique solution under some Carathéodory type con-
ditions and we extend the existence results [, , ] to the phase space Cg . To the best
of our knowledge, under non-linear growth conditions, the exponential estimates and al-
most surely asymptotic estimates of solutions for NSFDEs with infinite delay and Lévy
jumps have scarcely been investigated.

The rest of this paper is organized as follows. In Section , we introduce some basic pre-
liminaries and assumptions on equation (.); while in Section  we show that equation
(.) has a unique solution on [, T] under the Carathéodory conditions; in Section , we
prove the pth moment of solution will grow at most exponentially with exponent M

(–k)p

and show that the exponential estimations implies the almost surely asymptotic estima-
tions. Finally, we give two examples to illustrate the theory in Section .

2 Preliminaries and some assumptions
Throughout this paper, unless otherwise specified, we use the following notation. Let |x|
be the Euclidean norm of a vector x ∈ Rn. If A is a matrix, its trace norm is denoted by
|A| =

√
trace(A�A). Let (�,F , {Ft}t≥, P) be a complete probability space with a filtration

{Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous while F

contains all P-null sets). Let w(t) = (w(t), . . . , wm(t))T be an m-dimensional Brownian mo-
tion defined on the probability space (�,F , P).

Let {p̄ = p̄(t), t ≥ } be a stationary Ft-adapted and Rn-valued Poisson point process.
Then, for A ∈ B(Rn – {}), here B(Rn – {}) denotes the Borel σ -field on Rn – {} and  /∈
the closure of A, we define the Poisson counting measure N associated with p̄ by

N
(
(, t] × A

)
:= #

{
 < s ≤ t, p̄(s) ∈ A

}
=

∑

t<s≤t
IA

(
p̄(s)

)
,



Mao et al. Advances in Difference Equations  (2017) 2017:57 Page 3 of 24

where # denotes the cardinality of the set {·}. For simplicity, we denote N(t, A) := N((, t]×
A). It is well known that there exists a σ -finite measure π such that

E
[
N(t, A)

]
= π (A)t, P

(
N(t, A) = n

)
=

exp(–tπ (A))(π (A)t)n

n!
.

This measure π is called the Lévy measure. Moreover, by Doob-Meyer’s decomposition
theorem, there exists a unique {Ft}-adapted martingale Ñ(t, A) and a unique {Ft}-adapted
natural increasing process N̂(t, A) such that

N(t, A) = Ñ(t, A) + N̂(t, A), t > .

Here Ñ(t, A) is called the compensated Lévy jumps and N̂(t, A) = π (A)t is called the com-
pensator.

Let C = C((–∞, ], Rn) denote the family of continuous functions from (–∞, ] to Rn,
define

Cg =
{
φ ∈ C :

φ

g
is uniform continuous on (–∞, ] and sup

s≤

|φ(s)|
g(s)

< ∞
}

,

where g : (–∞, ] → [,∞) be a continuous and non-increasing function such that
g(–∞) = +∞, g() = . For any φ ∈ Cg , define the norm: |φ|g = sups≤

|φ(s)|
g(s) , then the space

(Cg , | · |g) is a Banach space, which was proved by Arion [].
Let p ≥ ,Mp([a, b]; Rn) denote the family of Ft-measurable, Rn-valued process f (t) =

{f (t,ω)}, t ∈ [a, b] such that E
∫ b

a |f (t)|p dt < ∞. In this paper, we assume that Lévy jumps N
is independent of Brownian motion w. For Z ∈ B(Rn –{}), consider the following NSFDEs
with Lévy jumps:

d
[
x(t) – D(t, xt)

]

= f (t, xt) dt + g(t, xt) dw(t) +
∫

Z
h(t, xt–, v)N(dt, dv),  ≤ t ≤ T , (.)

where xt = {x(t + θ ) : –∞ < θ ≤ } and xt– denotes the left limit of xt . D : [, T] × Cg → Rn,
f : [, T] × Cg → Rn, g : [, T] × Cg → Rn×m and h : [, T] × Cg × Z → Rn are both Borel-
measurable functions. The initial function x is given as

x = ξ =
{
ξ (θ ) : –∞ < θ ≤ 

}
.

That is, ξ is an F-measurable Cg -valued random variable such that ξ ∈M((–∞, ]; Rn).
In order to obtain the main results, we give the following conditions.

Assumption . Let D(t, ) =  and for any ϕ,ψ ∈ Cg , there exists a constant k ∈ (, )
such that

∣∣D(t,ϕ) – D(t,ψ)
∣∣ ≤ k|ϕ – ψ |g . (.)

Here, D(t,ϕ) is continuous in t for each fixed ϕ ∈ Cg .
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Assumption . For any ϕ,ψ ∈ Cg and t ∈ [, T], there exists a function k(t, u) : R+ ×
R+ → R+ such that

∣
∣f (t,ϕ) – f (t,ψ)

∣
∣ ∨ ∣

∣g(t,ϕ) – g(t,ψ)
∣
∣ ∨

∫

Z

∣
∣h(t,ϕ, v) – h(t,ψ , v)

∣
∣

π (dv)

≤ k
(
t, |ϕ – ψ |g

)
. (.)

Here k(t, u) is locally integrable in t for each fixed u ∈ [,∞), it is continuous, nondecreas-
ing, and concave in u for each fixed t ∈ [, T]. Moreover, k(t, ) =  and for any constant
C > , if a non-negative continuous function z(t), t ∈ [, T], satisfies z() =  and

z(t) ≤ C

∫ t


k
(
s, z(s)

)
ds, (.)

then z(t) =  for all t ∈ [, T].

Assumption . For any constant C > , the deterministic ordinary differential equation

du
dt

= Ck(t, u),  ≤ t ≤ T ,

has a global solution for any initial value u.

Assumption . For any t ∈ [, T], there exists a constant K such that

∣∣f (t, )
∣∣ ∨ ∣∣g(t, )

∣∣ ∨
∫

Z

∣∣h(t, , v)
∣∣

π (dv) ≤ K . (.)

Assumption . For any integer N > , there exists a function kN (t, u) : R+ × R+ → R+,
such that

∣∣f (t,ϕ) – f (t,ψ)
∣∣ ∨ ∣∣g(t,ϕ) – g(t,ψ)

∣∣ ∨
∫

Z

∣∣h(t,ϕ, v) – h(t,ψ , v)
∣∣

π (dv)

≤ kN
(
t, |ϕ – ψ |g

)
, (.)

for any ϕ,ψ ∈ Cg with |ϕ|g , |ψ |g ≤ N and t ∈ [, T]. Here kN (t, u) is nondecreasing and
locally integrable in t for each fixed u ∈ [,∞), it is continuous and nondecreasing and
concave in u for each fixed t ∈ [, T]. Moreover, kN (t, ) =  and for any constant C > ,
if a non-negative continuous function z(t) satisfies z() =  and

z(t) ≤ C

∫ t


kN

(
s, z(s)

)
ds, (.)

then z(t) =  for all t ∈ [, T].

Remark . Clearly, the conditions (.) and (.) imply the growth condition. That is,
for any ϕ ∈ Cg and t ∈ [, T], there exists a function k(t, u) : R+ × R+ → R+ such that

∣∣f (t,ϕ)
∣∣ ∨ ∣∣g(t,ϕ)

∣∣ ∨
∫

Z

∣∣h(t,ϕ, v)
∣∣

π (dv) ≤ k
(
t, |ϕ|g

)
+ K , (.)

where k(t, u) is defined as Assumption ..
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Remark . By using the Carathéodory theorem (see []), it follows that the determin-
istic ordinary differential equation

du
dt

= Ck(t, u),  ≤ t ≤ T ,

has a global solution for any initial value u. In addition, by applying Lemma  in [], we
see that z(t) of (.) is identically zero on [, T].

3 Existence and uniqueness theorem
In this section, we establish the existence and uniqueness theorem to equation (.) under
the Carathéodory type conditions.

In order to prove our main results, we need to introduce the following lemmas.

Lemma . Let p ≥  and a, b ∈ Rn. Then, for ε > ,

|a + b|p ≤ [
 + ε


p–

]p–
(

|a|p +
|b|p
ε

)
.

Lemma . Let φ : R+ × Z → Rn and assume that

∫ t



∫

Z

∣
∣φ(s, v)

∣
∣p

π (dv) ds < ∞, p ≥ .

Then there exists Dp >  such that

E
(

sup
≤t≤u

∣∣∣
∣

∫ t



∫

Z
φ(s, v)Ñ(ds, dv)

∣∣∣
∣

p)
≤ Dp

{
E
(∫ u



∫

Z

∣∣φ(s, v)
∣∣

π (dv) ds
) p



+ E
∫ u



∫

Z

∣∣φ(s, v)
∣∣p

π (dv) ds
}

.

The proofs of Lemma . and Lemma . can be found in [] and [, ], we omit them
here.

Lemma . Let p ≥  and a, b ∈ Rn. Then, for any δ ∈ (, ),

|a + b|p ≤ |a|p
( – δ)p– +

|b|p
δp– .

The proof of Lemma . can be obtained from Lemma . by putting ε = δ
–δ

.

Lemma . For any f ∈M([, T]; Rn), g ∈M([, T]; Rn×d) and h ∈M([, T] × Z; Rn),
the following equation:

⎧
⎨

⎩
d[x(t) – D(t, xt)] = f (t) dt + g(t) dw(t) +

∫
Z h(t, v)N(dt, dv), t ∈ [, T],

x() = ξ ,
(.)

has a unique solution x(t) on [, T] under Assumption ..
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Proof Define the operator �,

(�x)(t) = x + D(t, xt) – D(, x) +
∫ t


f (s) ds

+
∫ t


g(s) dw(s) +

∫ t



∫

Z
h(s, v)N(ds, dv),

and (�x)() = ξ , then we write equation (.) as x(t) = (�x)(t). Clearly, �x is an Rn-valued
measurable {Ft}-adapted process and continuous in t ∈ [, T]. By the Hölder inequality
and the Doob martingale inequality, we obtain

E
(

sup
≤t≤T

∣
∣(�x)(t)

∣
∣

)

≤ E sup
≤t≤T

|x| + E sup
≤t≤T

∣
∣D(t, xt) – D(, x)

∣
∣ + E sup

≤t≤T

∣∣
∣∣

∫ t


f (s) ds

∣∣
∣∣



+ E sup
≤t≤T

∣
∣∣
∣

∫ t


g(s) dw(s)

∣
∣∣
∣



+ E sup
≤t≤T

∣
∣∣
∣

∫ t



∫

Z
h(s, v)N(ds, dv)

∣
∣∣
∣



≤ |x| + k
E sup

≤t≤T
|xt – x|g + TE

∫ T



∣∣f (s)
∣∣ ds

+ E
∫ T



∣∣g(s)
∣∣ ds + E

∫ T



∫

Rn

∣∣h(s, u)
∣∣

π (du) ds.

Note that |xt|g = sup–∞≤σ≤
x(t+σ )

g(σ ) , we obtain

E sup
≤s≤t

|xs|g ≤ E sup
≤s≤t

sup
–∞≤σ≤

( |x(s + σ )|
g(σ )

)

≤ E|ξ |g + E sup
≤s≤t

∣∣x(s)
∣∣.

Therefore, by applying the basic inequality |a + b| ≤ |a| + |b|, we have

E
(

sup
≤t≤T

∣∣(�x)(t)
∣∣

)
≤ (

 + k

)
E|ξ |g + k

E sup
≤t≤T

∣∣x(t)
∣∣ + +TE

∫ T



∣∣f (s)
∣∣ ds

+ E
∫ T



∣∣g(s)
∣∣ ds + E

∫ T



∫

Rn

∣∣h(s, u)
∣∣

π (du) ds.

Since f ∈ M([, T]; Rn), g ∈ M([, T]; Rn×d) and h ∈ M([, T] × Z; Rn), if
E sup≤t≤T |x(t)| < ∞, then we get

E
(

sup
≤t≤T

∣∣(�x)(t)
∣∣

)
< ∞. (.)

Hence, (.) implies � is an operator from M([, T]; Rn) to itself and we conclude
that � is well defined. Now, we prove that � has a unique fixed point. For any x, y ∈
M([, T]; Rn), we have

E sup
≤t≤T

∣∣(�x)(t) – (�y)(t)
∣∣ = E sup

≤t≤T

∣∣D(t, xt) – D(t, yt)
∣∣

≤ k
E sup

≤t≤T

∣∣x(t) – y(t)
∣∣.
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From  < k
 < , it follows that φ is a contractive mapping. Thus, by the Banach fixed

point theorem, we have the operator � has a unique fixed point in M([, T]; Rn), i.e.,
there exists a unique stochastic process x = x(t) satisfying

E sup
≤t≤T

∣∣x(t) – (�x)(t)
∣∣ = .

So x(t) is a unique solution of equation (.) in [, T]. The proof is complete. �

Theorem . Let Assumptions .-. hold. Then there exists a unique Ft-adapted solu-
tion {x(t)}t≥ to equation (.) such that E(sup≤t≤T |x(t)|) < ∞ for all T > .

Proof We construct the sequence of successive approximations defined as follows:

x(t) = ξ (), t ∈ (–∞, T] and xn
 = ξ , n ≥ ,

xn(t) – D
(
t, xn

t
)

= ξ () – D(, ξ ) +
∫ t


f
(
s, xn–

s
)

ds +
∫ t


g
(
s, xn–

s
)

dw(s)

+
∫ t



∫

Z
h
(
s, xn–

s– , v
)
N(ds, dv), t ∈ [, T], n ≥ . (.)

The solution xn(t) of the above equation exists according to Lemma .. The proof will be
split into the following three steps.

Step . Let us show that {xn(t)}n≥ is bounded. Taking ε ∈ (, 
k


– ), by applying the

elementary inequality |a + b| ≤ ( + ε)|a| + ( + ε–)|b| and Assumption ., we derive
that

∣
∣xn(t)

∣
∣ ≤ ( + ε)

∣
∣D

(
t, xn

t
)∣∣ +

(
 + ε–)∣∣xn(t) – D

(
t, xn

t
)∣∣

≤ ( + ε)k

∣
∣xn

t
∣
∣
g +

(
 + ε–)∣∣xn(t) – D

(
t, xn

t
)∣∣.

In particular, taking ε = 
 ( 

k


– ), we get

∣
∣xn(t)

∣
∣ ≤  + k




∣
∣xn

t
∣
∣
g +

 + k


 – k


∣
∣xn(t) – D

(
t, xn

t
)∣∣. (.)

Taking the expectation on both sides of (.), we have

E sup
≤s≤t

∣
∣xn(s)

∣
∣ ≤  + k




E sup
≤s≤t

∣
∣xn

s
∣
∣
g +

 + k


 – k


E sup
≤s≤t

∣
∣xn(s) – D

(
s, xn

s
)∣∣.

Similarly, note that |xn
t |g = sup–∞≤σ≤

xn(t+σ )
g(σ ) , we obtain

E sup
≤s≤t

∣
∣xn

s
∣
∣
g ≤ E sup

≤s≤t
sup

–∞≤σ≤

( |xn(s + σ )|
g(σ )

)

≤ E|ξ |g + E sup
≤s≤t

∣
∣xn(s)

∣
∣.

Since k ∈ (, ), then we have +k


 < ,

E sup
≤s≤t

∣∣xn(s)
∣∣ ≤  + k


 – k


E|ξ |g +

( + k
)

( – k
) E sup

≤s≤t

∣∣xn(s) – D
(
s, xn

s
)∣∣. (.)
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Next, we will estimate the second term of (.). Using the elementary inequality |a + b +
c + d| ≤ (|a| + |b| + |c| + |d|), it follows from (.) that

E sup
≤s≤t

∣∣xn(t) – D
(
t, xn

t
)∣∣

≤ E sup
≤s≤t

∣
∣ξ () – D(, ξ )

∣
∣ + E sup

≤s≤t

∣∣
∣∣

∫ s


f
(
σ , xn–

σ

)
dσ

∣∣
∣∣



+ E sup
≤s≤t

∣
∣∣
∣

∫ s


g
(
σ , xn–

σ

)
dw(σ )

∣
∣∣
∣



+ E sup
≤s≤t

∣
∣∣
∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
N(dσ , dv)

∣
∣∣
∣



. (.)

By Lemma . with p = , we have

E sup
≤s≤t

∣∣ξ () – D(, ξ )
∣∣ ≤ ( + k)

(
E
∣∣ξ ()

∣∣ +
E|D(, ξ )|

k

)

≤ ( + k)E|ξ |g . (.)

Using the Hölder inequality and Doob’s martingale inequality, we get

E sup
≤s≤t

∣
∣∣
∣

∫ s


f
(
σ , xn–

σ

)
dσ

∣
∣∣
∣



≤ TE
∫ t



∣∣f
(
s, xn–

s
)∣∣ ds (.)

and

E sup
≤s≤t

∣∣∣
∣

∫ s


g
(
σ , xn–

σ

)
dw(σ )

∣∣∣
∣



≤ E
∫ t



∣∣g
(
s, xn–

s
)∣∣ ds. (.)

Now for the fourth term of (.). By using the basic inequality |a + b| ≤ (|a| + |b|), we
have

E sup
≤s≤t

∣∣
∣∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
N(dσ , dv)

∣∣
∣∣



≤ E sup
≤s≤t

∣∣
∣∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
Ñ(dσ , dv)

∣∣
∣∣



+ E sup
≤s≤t

∣
∣∣
∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
π (dv) dσ

∣
∣∣
∣



,

where N(dt, dv) = Ñ(dt, dv) +π (dv) dt. By Lemma . with p =  and the Hölder inequality,
we derive that

E sup
≤s≤t

∣∣
∣∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
π (dv) dσ

∣∣
∣∣



≤ [
Tπ (Z)

]
E

∫ t



∫

Z

∣
∣h

(
s, xn–

s– , v
)∣∣

π (dv) ds

and

E sup
≤s≤t

∣
∣∣∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
Ñ(dσ , dv)

∣
∣∣∣



≤ DE
∫ t



∫

Z

∣∣h
(
s, xn–

s– , v
)∣∣

π (dv) ds.

Therefore,

E sup
≤s≤t

∣∣∣
∣

∫ s



∫

Z
h
(
σ , xn–

σ– , v
)
N(dσ , dv)

∣∣∣
∣



≤ 
[
D + Tπ (Z)

]
E

∫ t



∫

Z

∣
∣h

(
s, xn–

s– , v
)∣∣

π (dv) ds. (.)
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Combining with (.)-(.), it follows that

E sup
≤s≤t

∣
∣xn(s) – D

(
t, xn

s
)∣∣

≤ ( + k)E|ξ |g + TE
∫ t



∣
∣f

(
s, xn–

s
)∣∣ ds + E

∫ t



∣
∣g

(
s, xn–

s
)∣∣ ds

+ 
[
D + Tπ (Z)

]
E

∫ t



∫

Z

∣∣h
(
s, xn–

s– , v
)∣∣

π (dv) ds.

Then the condition (.) implies that

E sup
≤s≤t

∣∣xn(s) – D
(
t, xn

s
)∣∣

≤ ( + k)E|ξ |g + TE
∫ t



∣∣f
(
s, xn–

s
)

– f (s, )
∣∣ ds + T

∫ t



∣∣f (s, )
∣∣ ds

+ E
∫ t



∣
∣g

(
s, xn–

s
)

– g(s, )
∣
∣ ds + 

∫ t



∣
∣g(s, )

∣
∣ ds

+ 
[
D + Tπ (Z)

]
E

∫ t



∫

Z

∣∣h
(
s, xn–

s– , v
)

– h(s, , v)
∣∣

π (dv) ds

+ 
[
D + Tπ (Z)

] ∫ t



∫

Z

∣
∣h(s, , v)

∣
∣

π (dv) ds

≤ cE|ξ |g + cK + (T + )E
∫ t


k
(
s,

∣∣xn–
s

∣∣
g

)
ds

+
[
D + Tπ (Z)

]
E

∫ t


k
(
s,

∣
∣xn–

s–
∣
∣
g

)
ds,

where c = ( + k), c = (T +  + D + Tπ (Z)). By applying the Jensen inequality,
we have

E sup
≤s≤t

∣
∣xn(s) – D

(
t, xn

s
)∣∣

≤ cE|ξ |g + cK + (T + )
∫ t


k
(
s, E

∣
∣xn–

s
∣
∣
g

)
ds

+
[
D + Tπ (Z)

] ∫ t


k
(
s, E

∣∣xn–
s–

∣∣
g

)
ds

≤ cE|ξ |g + cK + c

∫ t


k
(

s, E sup
≤σ≤s

∣∣xn–
σ

∣∣
g

)
ds. (.)

Then, inserting (.) into (.), we get

E sup
≤s≤t

∣∣xn(t)
∣∣ ≤ cE|ξ |g + cK + c

∫ t


k
(

s, E sup
≤σ≤s

∣∣xn–
σ

∣∣
g

)
ds

≤ cE|ξ |g + cK + c

∫ t


k
(

s, E|ξ |g + E sup
≤σ≤s

∣∣xn–(σ )
∣∣

)
ds,
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where c = (+k)(–k
)

–k


and c = (+k)

(–k) . This indicates that

E|ξ |g + E sup
≤s≤t

∣∣xn(t)
∣∣

≤ ( + c)E|ξ |g + cK + c

∫ t


k
(

s, E|ξ |g + E sup
≤σ≤s

∣∣xn–(σ )
∣∣

)
ds. (.)

By Assumption ., it follows that u(t) is a global solution of the equation

u(t) = u + c

∫ t


k
(
s, u(s)

)
ds

with the initial condition u > ( + c)E|ξ |g + cK . Now, we will prove the following in-
equality:

E|ξ |g + E sup
≤s≤t

∣∣xn(s)
∣∣ ≤ u(t), (.)

holding for all n ≥ . For n = , the inequality (.) holds by the definition of u. When
n = k – , suppose that

E|ξ |g + E sup
≤s≤t

∣
∣xk–(s)

∣
∣ ≤ u(t) (.)

holds. Then, by (.),

u(t) – E|ξ |g – E sup
≤s≤t

∣
∣xk(s)

∣
∣

≥ u – ( + c)E|ξ |g – cK + c

∫ t



[
k
(
s, u(s)

)
– k

(
s, E|ξ |g + E sup

≤σ≤s

∣
∣xn–(σ )

∣
∣

)]
ds

≥ .

From mathematical induction and (.), we have

E|ξ |g + E sup
≤s≤t

∣∣xk(s)
∣∣ ≤ u(t).

Since k(t, u) is continuous and nondecreasing in u for each fixed t ≥ , we obtain

E sup
≤t≤T

∣∣xn(t)
∣∣ ≤ u(T) < ∞ (.)

for all n ≥ . This proves the boundedness of {xn(t), n ≥ }.
Step . Let us show that {xn(t)}n≥ is a Cauchy sequence. Since the sequence {xn(t)}n≥

is bounded by (.), we obtain a positive constant C such that

E sup
≤t≤T

∣∣xn(t) – xm(t)
∣∣ ≤ E sup

≤t≤T

∣∣xn(t)
∣∣ + E sup

≤t≤T

∣∣xm(t)
∣∣ ≤ C.
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For any t ∈ [, T] and m, n ≥ , it follows from Lemma . with p =  and Assumption .
that

∣
∣xn(t) – xm(t)

∣
∣ ≤ |xn(t) – xm(t) – [D(t, xn

t ) – D(t, xm
t )]|

 – k
+

|D(t, xn
t ) – D(t, xm

t )|
k

≤ |xn(t) – xm(t) – [D(t, xn
t ) – D(t, xm

t )]|
 – k

+ k
∣∣xn

t – xm
t
∣∣
g , (.)

where δ = k. Taking the expectation on both sides of (.), it follows that for any t ∈ [, T]

E sup
≤s≤t

∣∣xn(t) – xm(t)
∣∣ ≤ E sup≤s≤t |xn(s) – xm(s) – [D(s, xn

s ) – D(s, xm
s )]|

 – k

+ kE sup
≤s≤t

∣
∣xn(s) – xm(s)

∣
∣.

Consequently,

E sup
≤s≤t

∣
∣xn(s) – xm(s)

∣
∣ ≤ E sup≤s≤t |xn(s) – xm(s) – [D(s, xn

s ) – D(s, xm
s )]|

( – k) . (.)

Now, we will estimate E sup≤s≤t |xn(s)–xm(s)–[D(s, xn
s )–D(s, xm

s )]|. Using the elementary
inequality |a + b + c| ≤ (|a| + |b| + |c|), we have

E sup
≤s≤t

∣∣xn(s) – xm(s) –
[
D

(
s, xn

s
)

– D
(
s, xm

s
)]∣∣

≤ E sup
≤s≤t

∣∣
∣∣

∫ t



[
f
(
σ , xn–

σ

)
– f

(
σ , xm–

σ

)]
dσ

∣∣
∣∣



+ E sup
≤s≤t

∣∣
∣∣

∫ s



[
g
(
σ , xn–

σ

)
– g

(
σ , xm–

σ

)]
dw(σ )

∣∣
∣∣



+ E sup
≤s≤t

∣
∣∣
∣

∫ s



∫

Z

[
h
(
σ , xn–

σ– , v
)

– h
(
σ , xm–

σ– , v
)]

N(dσ , dv)
∣
∣∣
∣



. (.)

Using the Hölder inequality and Doob’s martingale inequality again, we get

E sup
≤s≤t

∣∣
∣∣

∫ t



[
f
(
σ , xn–

σ

)
– f

(
σ , xm–

σ

)]
dσ

∣∣
∣∣



≤ TE
∫ t



∣
∣f

(
s, xn–

s
)

– f
(
s, xm–

s
)∣∣ ds (.)

and

E sup
≤s≤t

∣∣∣
∣

∫ s



[
g
(
σ , xn–

σ

)
–g

(
σ , xm–

σ

)]
dw(σ )

∣∣∣
∣



≤ E
∫ t



∣∣g
(
s, xn–

s
)

–g
(
s, xm–

s
)∣∣ ds. (.)

In the meantime, by Lemma . with p =  and the Hölder inequality, we have

E sup
≤s≤t

∣∣
∣∣

∫ s



∫

Z

[
h
(
σ , xn–

σ– , v
)

– h
(
σ , xm–

σ– , v
)]

N(dσ , dv)
∣∣
∣∣



≤ E sup
≤s≤t

∣
∣∣
∣

∫ t



∫

Z

[
h
(
σ , xn–

σ– , v
)

– h
(
σ , xm–

σ– , v
)]

Ñ(dσ , dv)
∣
∣∣
∣
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+ E sup
≤s≤t

∣
∣∣
∣

∫ t



∫

Z

[
h
(
σ , xn–

σ– , v
)

– h
(
σ , xm–

σ– , v
)]

π (dv) dσ

∣
∣∣
∣



≤ 
[
D + Tπ (Z)

]
E

∫ t



∫

Z

∣∣h
(
s, xn–

s– , v
)

– h
(
s, xm–

s– , v
)∣∣

π (dv) ds. (.)

Combining with (.)-(.), it follows from Assumption . that

E sup
≤s≤t

∣∣xn(s) – xm(s) –
[
D

(
s, xn

s
)

– D
(
s, xm

s
)]∣∣

≤ (T + )E
∫ t


k
(
s,

∣∣xn–
s – xm–

s
∣∣
g

)
ds + 

[
D + Tπ (Z)

]
E

∫ t


k
(
s,

∣∣xn–
s– – xm–

s–
∣∣
g

)
ds

≤ (T + )
∫ t


k
(
s, E

∣
∣xn–

s – xm–
s

∣
∣
g

)
ds + 

[
D + Tπ (Z)

] ∫ t


k
(
s, E

∣
∣xn–

s– – xm–
s–

∣
∣
g

)
ds

≤ [
T +  + D + Tπ (Z)

] ∫ t


k
(

s, E sup
≤σ≤s

∣∣xn–(σ ) – xm–(σ )
∣∣
g

)
ds. (.)

Substituting (.) into (.), we get

E sup
≤s≤t

∣∣xn(s) – xm(s)
∣∣

≤ T +  + D + Tπ (Z)
( – k)

∫ t


k
(

s, E sup
≤σ≤s

∣∣xn–(σ ) – xm–(σ )
∣∣
g

)
ds.

Then, by the Fatou lemma and (.), it is easily seen that

lim
n,m→∞ E sup

≤s≤t

∣
∣xn(s) – xm(s)

∣
∣

≤ T +  + D + Tπ (Z)
( – k)

∫ t


k
(

s, lim
n,m→∞ E sup

≤σ≤s

∣
∣xn(σ ) – xm(σ )

∣
∣

)
ds.

Hence, Assumption . implies that

lim
n,m→∞ E sup

≤s≤t

∣∣xn(s) – xm(s)
∣∣ = . (.)

This shows that {xn(t)} is a Cauchy sequence in M([, T]; Rn).
Step . According to (.), it follows that there exists x(t) ∈ M([, T]; Rn) such that

limn→∞ E sup≤s≤t |xn(s) – x(s)| = . For any δ > , by the Chebyshev inequality, we have

lim
n→∞ P

(
sup

≤s≤t

∣∣xn(s) – x(s)
∣∣ ≥ δ

)
= . (.)

Hence, there exists a subsequence {ni}i=,,,...,∞ satisfying

P
(

sup
≤s≤t

∣
∣xni (s) – x(s)

∣
∣ ≥ 

i

)
≤ 

i , i ≥ . (.)

The Borel-Cantelli lemma shows that xni (t) converges to x(t) almost surely uniformly on
[, T] as ni → ∞. Taking the limits on both sides of (.) and letting n → ∞, we see that
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x(t) is a solution of equation (.). In addition, similar to the proof of (.), we obtain
E sup≤t≤T |x(t)| < ∞ for any T > .

Now we address proving the uniqueness of equation (.). Let x(t) and y(t) be any two
solutions of equation (.), we can prove by the same procedure as Step  that

E sup
≤s≤t

∣
∣x(s) – y(s)

∣
∣ ≤ C

∫ t


k
(

s, E
(

sup
≤σ≤s

∣
∣x(σ ) – y(σ )

∣
∣

))
dσ

for all t ∈ [, T]. By Assumption ., we obtain

E sup
≤s≤t

∣
∣x(s) – y(s)

∣
∣ = ,

i.e., for any t ∈ [, T], x(t) ≡ y(t) a.s. The proof is completed. �

Remark . Let k(t, u) = c(t)k(u), t ∈ [, T], where c(t) ≥  is locally integrable and k(u) is
a continuous, nondecreasing, and concave function with k() =  such that

∫
+


k(u) du =

∞. Then by the comparison theorem of differential dynamic systems we know that As-
sumptions . and . hold.

Remark . Now let us give some concrete examples of the function k(·). Let L >  and
δ ∈ (, ) be sufficiently small. Define k(u) = Lu,

k(u) =

⎧
⎨

⎩

u
√

log( 
u ), u ∈ [, δ],

δ

√
log( 

δ
) + k′

(δ–)(u – δ), u ∈ [δ, +∞],

where k′ denotes the derivative of the function k. They are all concave nondecreasing
functions satisfy

∫
+

du
ki(u) = +∞ (i = , ).

Next, we will prove the existence and uniqueness of solutions to equation (.) under
the local Carathéodory conditions.

Theorem . If Assumptions ., ., ., and . hold, then there exists a unique local
solution {x(t)}t≥ to equation (.).

Proof Let T ∈ (, T), for each N ≥ , we define the truncation function fN (t,ϕ) as follows:

fN (t,ϕ) =

⎧
⎨

⎩
f (t,ϕ), |ϕ|g ≤ N ,

f (t, N ϕ

|ϕ|g ), |ϕ|g > N ,

and gN (t,ϕ), hN (t,ϕ, v) similarly. Then fN , gN , and hN satisfy Assumption . due to the
following inequality as regards fN , gN , and hN :

∣
∣fN (t,ϕ) – fN (t,ψ)

∣
∣ ∨ ∣

∣gN (t,ϕ) – gN (t,ψ)
∣
∣ ≤ kN

(
t, |ϕ – ψ |g

)
,

∫

Z

∣
∣hN (t,ϕ, v) – hN (t,ψ , v)

∣
∣

π (dv) ≤ kN
(
t, |ϕ – ψ |g

)
,
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where ϕ,ψ ∈ Cg and t ∈ [, T]. Therefore, by Theorem ., there exists a unique solution
xN (t) and xN+(t), respectively, to the following stochastic systems:

xN (t) = ξ () + D
(
t, (xN )t

)
– D(, ξ ) +

∫ t


fN

(
s, (xN )s

)
ds +

∫ t


gN

(
s, (xN )s

)
dw(s)

+
∫ t



∫

Z
hN

(
s, (xN )s–, v

)
N(ds, dv),

xN+(t) = ξ () + D
(
t, (xN+)t

)
– D(, ξ ) +

∫ t


fN+

(
s, (xN+)s

)
ds

+
∫ t


gN+

(
s, (xN+)s

)
dw(s) +

∫ t



∫

Z
hN+

(
s, (xN+)s–, v

)
N(ds, dv).

By Lemma . with p =  and Assumption ., it follows that

E sup
≤s≤t

∣∣xN+(s) – xN (s)
∣∣

≤ E sup≤s≤t |xN+(s) – xN (s) – [D(s, (xN+)s) – D(s, (xN )s)]|
( – k) . (.)

Define the stopping times

σN := T ∧ inf
{

t ∈ [, T] :
∣∣xN (t)

∣∣ ≥ N
}

,

σN+ := T ∧ inf
{

t ∈ [, T] :
∣∣xN+(t)

∣∣ ≥ N + 
}

,

τN := σN ∧ σN+.

Again the Hölder inequality, the Burkholder-Davis-Gundy inequality, and Lemma . with
p =  imply that

E sup
≤s≤t∧τN

∣
∣xN+(s) – xN (s) –

[
D

(
s, (xN+)s

)
– D

(
s, (xN )s

)]∣∣

≤ TE
∫ t∧τN



∣∣fN+
(
s, (xN+)s

)
– fN

(
s, (xN )s

)∣∣ ds

+ E
∫ t∧τN



∣
∣gN+

(
s, (xN+)s

)
– gN

(
s, (xN )s

)∣∣ ds

+ 
[
D + Tπ (Z)

]
E

∫ t∧τN



∫

Z

∣∣hN+
(
s, (xN+)s–, v

)
– hN

(
s, (xN )s–, v

)∣∣
π (dv) ds.

Noting that, for any  ≤ t ≤ τN ,

fN+
(
s, (xN )s

)
= fN

(
s, (xN )s

)
, gN+

(
s, (xN )s

)
= gN

(
s, (xN )s

)
,

hN+
(
s, (xN )s–, v

)
= hN

(
s, (xN )s–, v

)
,

we derive that

E sup
≤s≤t∧τN

∣
∣xN+(s) – xN (s) –

[
D

(
s, (xN+)s

)
– D

(
s, (xN )s

)]∣∣

≤ TE
∫ t∧τN



∣
∣fN+

(
s, (xN+)s

)
– fN+

(
s, (xN )s

)∣∣ ds
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+ E
∫ t∧τN



∣∣gN+
(
s, (xN+)s

)
– gN+

(
s, (xN )s

)∣∣ ds

+ 
[
D + Tπ (Z)

]
E

×
∫ t∧τN



∫

Z

∣∣hN+
(
s, (xN+)s–, v

)
– hN+

(
s, (xN )s–, v

)∣∣
π (dv) ds. (.)

Substituting (.) into (.), it follows from Assumption . that

E sup
≤s≤t

∣∣xN+(s ∧ τN ) – xN (s ∧ τN )
∣∣

≤ T +  + [D + Tπ (Z)]
( – k)

∫ t∧τN


kN+

(
s, E

∣∣(xN+)s– – (xN )s–
∣∣
g

)
ds. (.)

If t ≤ τN , then we have

∫ t∧τN


kN+

(
s, E

∣∣(xN+)s– – (xN )s–
∣∣
g

)
ds

=
∫ t


kN+

(
s ∧ τN , E

∣
∣(xN+)s∧τN – – (xN )s∧τN –

∣
∣
g

)
ds.

If t > τN , then we have

∫ t∧τN


kN+

(
s, E

∣
∣(xN+)s– – (xN )s–

∣
∣
g

)
ds

≤
∫ t


kN+

(
s ∧ τN , E

∣∣(xN+)s∧τN – – (xN )s∧τN –
∣∣
g

)
ds.

For any fixed u ∈ [,∞), kN (t, u) is nondecreasing in t, so we obtain

E sup
≤s≤t

∣∣xN+(s ∧ τN ) – xN (s ∧ τN )
∣∣

≤ T +  + [D + Tπ (Z)]
( – k)

∫ t


kN+

(
s ∧ τN , E

∣∣(xN+)s∧τN – – (xN )s∧τN –
∣∣
g

)
ds

≤ T +  + [D + Tπ (Z)]
( – k)

×
∫ t


kN+

(
s ∧ τN , E sup

≤σ≤s

∣∣xN+(σ ∧ τN ) – xN (σ ∧ τN )
∣∣

)
ds

≤ T +  + [D + Tπ (Z)]
( – k)

∫ t


kN+

(
s, E sup

≤σ≤s

∣∣xN+(σ ∧ τN ) – xN (σ ∧ τN )
∣∣

)
ds.

From Assumption ., one sees that

E sup
≤s≤t

∣
∣xN+(s ∧ τN ) – xN (s ∧ τN )

∣
∣ = .

Therefore, we obtain

xN+(t) = xN (t), for t ∈ [, T ∧ τN ].
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For each ω ∈ �, there exists an N(ω) >  such that  < T ≤ τN . Now define x(t) by
x(t) = xN (t) for t ∈ [, T]. Since x(t ∧ τN ) = xN (t ∧ τN ), it follows that

x(t ∧ τN ) = ξ () + D
(
t ∧ τN , (xN )t∧τN

)
– D(, ξ ) +

∫ t∧τN


fN

(
s, (xN )s

)
ds

+
∫ t∧τN


gN

(
s, (xN )s

)
dw(s) +

∫ t∧τN



∫

Z
hN

(
s, (xN )s–, v

)
N(ds, dv)

= ξ () + D(t ∧ τN , xt∧τN ) – D(, ξ ) +
∫ t∧τN


f (s, xs) ds

+
∫ t∧τN


g(s, xs) dw(s) +

∫ t∧τN



∫

Z
h(s, xs–, v)N(ds, dv).

Letting N → ∞ then yields

x(t) = ξ () + D(t, xt) – D(, ξ ) +
∫ t


f (s, xs) ds

+
∫ t


g(s, xs) dw(s) +

∫ t



∫

Z
h(s, xs–, v)N(ds, dv), t ∈ [, T].

We can see that x(t) is the solution of equation (.). �

Remark . From Theorem ., we derive the existence and uniqueness of solution to
equation (.) under local Carathéodory conditions with the non-Lipschitz conditions in
[, , ] being regarded as special cases, which makes it more feasible that the condi-
tions of equation (.) can be satisfied.

If kN (t, u) is independent of t, i.e. kN (t, u) = kN (u), we obtain the following corollary.

Corollary . Let Assumptions . and . hold. Assume that, for any integer N >  and
t ∈ [, T], there exists a positive constant kN such that, for any ϕ,ψ ∈ Cg with |ϕ|g , |ψ |g ≤ N ,
it follows that

∣
∣b(t,ϕ) – b(t,ψ)

∣
∣ ∨ ∣

∣σ (t,ϕ) – σ (t,ψ)
∣
∣ ≤ kN

(|ϕ – ψ |g
)
, (.)

∫

Z

∣∣h(t,ϕ, v) – h(t,ψ , v)
∣∣

π (dv) ≤ kN
(|ϕ – ψ |g

)
, (.)

where kN (u) is a concave and nondecreasing function such that kN () =  and
∫

+


kN (u) du =
∞. Then equation (.) has a unique local solution x(t) on [, T].

Proof In fact, if the conditions of Corollary . hold, then Assumption . also holds. Thus,
from Theorem ., we can prove that equation (.) has a unique local solution x(t) on
[, T]. �

Remark . If we let kN (u) ≡ kN u, kN , u ≥ , then conditions (.) and (.) imply the
local Lipschitz condition which was investigated by [, , ]. Therefore, the correspond-
ing results of [, , ] are improved and generalized by Theorem . and Corollary ..
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4 Exponential estimations for solutions
In this section, we will give the pth exponential estimates and almost surely asymptotic
estimations of solutions to equation (.).

Assumption . (Non-linear growth condition) For any ϕ,ψ ∈ Cg and t ∈ [, T],

∣∣f (t,ϕ)
∣∣ ∨ ∣∣g(t,ϕ)

∣∣ ≤ ρ
(
 + |ϕ|g

)
,

(∫

Z

∣
∣h(t,ϕ, v)

∣
∣p

π (dv)
) 

p
≤ ρ

(
 + |ϕ|g

)
,

where ρ(·) is a concave and nondecreasing function from R+ to R+ such that ρ() =  and
ρ(u) >  for u > .

Since ρ(·) is concave and ρ() = , one can find a pair of positive constants a and b such
that ρ(u) ≤ a + bu for all u ≥ .

Remark . In particular, we see clearly that if let ρ(u) = Lu, L > , then Assumption .
reduces to the linear growth condition. In other words, Assumption . is much weaker
than the linear growth condition.

Suppose that equation (.) has a unique solution x(t), t ∈ [–∞, T]. Along with the non-
linear growth condition, we first establish the pth exponential estimates.

Theorem . Let E|ξ |pg < ∞ and Assumption . hold. Then, for any t ∈ [, T] and p ≥ ,

E sup
≤t≤T

∣∣x(t)
∣∣p ≤

[
k

 – k
E|ξ |pg +

M

( – k)p

]
e

M
(–k)p T , (.)

where M, M are two positive constants.

Proof Without loss of generality, we assume that x(t) is bounded. Otherwise, for each
integer n ≥ , define the stopping time

τn = inf
{

t ∈ [, T] :
∣
∣x(t)

∣
∣ ≥ n

}
.

If we can show (.) for the stopped processes x(t ∧ τn), then the general case follows upon
letting n → ∞. By the Itô formula, we derive that

∣
∣x(t) – D(t, xt)

∣
∣p

=
∣∣x() – D(, x)

∣∣p +
∫ t


p
∣∣x(s) – D(s, xs)

∣∣p–[x(s) – D(s, xs)
]�f (s, xs) ds

+
∫ t



p

∣∣x(s) – D(s, xs)

∣∣p–∣∣g(s, xs)
∣∣ ds

+
∫ t



p(p – )


∣
∣x(s) – D(s, xs)

∣
∣p–∣∣[x(s) – D(s, xs)

]�g(s, xs)
∣
∣ ds

+
∫ t


p
∣∣x(s) – D(s, xs)

∣∣p–[x(s) – D(s, xs)
]�g(s, xs) dw(s)

+
∫ t



∫

Z

(∣∣x(s) – D(s, xs) + h(s, xs–, v)
∣
∣p –

∣
∣x(s) – D(s, xs)

∣
∣p)N(ds, dv). (.)
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Taking the expectation on both sides of (.), one gets

E sup
≤s≤t

(∣∣x(s) – D(s, xs)
∣∣p)

≤ E sup
≤s≤t

∣∣x() – D(, x)
∣∣p + E

∫ t


p
∣∣x(s) – D(s, xs)

∣∣p–∣∣f (s, xs)
∣∣ds

+ E
∫ t



p(p – )


∣∣x(s) – D(s, xs)
∣∣p–∣∣g(s, xs)

∣∣ ds

+ E sup
≤s≤t

∫ s


p
∣∣x(σ ) – D(σ , xσ )

∣∣p–[x(σ ) – D(σ , xσ )
]�g(σ , xσ ) dw(σ )

+ E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣∣p

–
∣
∣x(σ ) – D(σ , xσ )

∣
∣p)N(dσ , dv). (.)

By Lemma . and Assumption ., we get

E sup
≤s≤t

∣
∣x() – D(, x)

∣
∣p ≤ [

 + ε


p–


]p–
(

E
∣
∣x()

∣
∣p +

E|D(, x)|p
ε

)

≤ [
 + ε


p–


]p–

(
E
∣∣x()

∣∣p + kp E|x|pg
ε

)

≤ ( + k)pE|ξ |pg , (.)

where ε = kp–
 . Using the basic inequality

ap–b ≤ ε(p – )
p

ap +


pεp– bp, a, b > , p ≥ , and ε > ,

we have

E
∫ t


p
∣∣x(s) – D(s, xs)

∣∣p–∣∣f (s, xs)
∣∣ds

≤ E
∫ t


p
[

ε(p – )
p

∣
∣x(s) – D(s, xs)

∣
∣p +


pε

p–


∣
∣f (s, xs)

∣
∣p

]
ds

≤ ε(p – )
∫ t


E sup

≤σ≤s

∣
∣x(σ ) – D(σ , xσ )

∣
∣p ds +


ε

p–


∫ t


E
∣
∣f (s, xs)

∣
∣p ds, (.)

where ε > . By Lemma ., it follows that

E sup
≤σ≤s

∣∣x(σ ) – D(σ , xσ )
∣∣p ds

≤ ( + k)p–
(

E sup
≤σ≤s

∣∣x(σ )
∣∣p + kE sup

≤σ≤s
|xσ |pg

)

≤ ( + k)p
[

E sup
≤σ≤s

∣
∣x(σ )

∣
∣p + E sup

≤σ≤s
sup

–∞≤u≤

( |x(s + u)|
g(u)

)p]

≤ ( + k)p
(

E|ξ |pg + E sup
≤σ≤s

∣
∣x(σ )

∣
∣p

)
. (.)
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From Assumption ., we obtain

E
∫ t



∣
∣f (s, xs)

∣
∣p ds ≤ E

∫ t



[
ρ
(
 + |xs|g

)] p
 ds,

≤ E
∫ t



[
a + b

(
 + |xs|g

)] p
 ds.

Applying the basic inequality |a + b| p
 ≤ 

p
 –(|a| p

 + |b| p
 ), it is easy to see that

E
∫ t



∣
∣f (s, xs)

∣
∣p ds

≤ 
p
 –E

∫ t



[
(a + b)

p
 + b

p
 |xs|pg

]
ds

≤ 
p
 –(a + b)

p

(
 + E|ξ |pg

)
T + 

p
 –(a + b)

p


∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds. (.)

Inserting (.) and (.) into (.) and letting ε =
√

(a + b), we obtain

E
∫ t


p
∣
∣x(s) – D(s, xs)

∣
∣p–∣∣f (s, xs)

∣
∣ds ≤ c̄

(
 + E|ξ |pg

)
T + c̄

∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds, (.)

where c̄ = 
√

(a + b)(p – )( + k)p +
√

a+b
 . For the third term of the inequality (.), by

applying the basic inequality

ap–b ≤ ε(p – )
p

ap +


pε
p–


bp,

it follows that, for a, b > , p ≥ , and ε > ,

E
∫ t



p(p – )


∣∣x(s) – D(s, xs)
∣∣p–∣∣g(s, xs)

∣∣ ds

≤ p(p – )


E
∫ t



[
ε(p – )

p
∣
∣x(s) – D(s, xs)

∣
∣p +



pε
p–




∣
∣g(s, xs)

∣
∣p

]
ds

≤ p(p – )


∫ t



[
ε(p – )

p
( + k)p

(
E|ξ |pg + E sup

≤σ≤s

∣
∣x(σ )

∣
∣p

)]
ds

+
p(p – )




pε
p–





p
 –(a + b)

p


[(
 + E|ξ |pg

)
T +

∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds

]
.

Letting ε = (a + b),

E
∫ t



p(p – )


∣∣x(s) – D(s, xs)
∣∣p–∣∣g(s, xs)

∣∣ ds

≤ c̄
(
 + E|ξ |pg

)
T + c̄

∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds, (.)
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where c̄ = (p – )(a + b)[ + (p – )( + k)p]. Noting that the fourth term of (.) is a
martingale, we easily obtain

E sup
≤s≤t

∫ s


p
∣
∣x(σ ) – D(σ , xσ )

∣
∣p–[x(σ ) – D(σ , xσ )

]�g(σ , xσ ) dw(σ ) = . (.)

Finally, note that the Lévy jump Ñ(dt, dv) is a martingale and N(dt, dv) = Ñ(dt, dv) +
π (dv) dt, we derive that

E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣
∣p –

∣
∣x(σ ) – D(σ , xσ )

∣
∣p)N(dσ , dv)

≤ E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣∣p –

∣∣x(σ ) – D(σ , xσ )
∣∣p)

π (dv) ds.

By the mean value theorem, we obtain, for any |θ | < ,

E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣
∣p –

∣
∣x(σ ) – D(σ , xσ )

∣
∣p)N(dσ , dv)

≤ pE
∫ t



∫

Z

[∣∣x(s) – D(s, xs) + θh(s, xs–, v)
∣
∣p–∣∣h(s, xs–, v)

∣
∣]π (dv) ds.

Together with the basic inequality |a + b|p– ≤ p–(|a|p– + |b|p–), this implies that

E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣∣p –

∣∣x(σ ) – D(σ , xσ )
∣∣p)N(dσ , dv)

≤ pp–E
∫ t



∫

Z

[∣∣x(s) – D(s, xs)
∣∣p–∣∣h(s, xs–, v)

∣∣ + |θ |p–∣∣h(s, xs–, v)
∣∣p]

π (dv) ds.

By Assumption ., we get

E
∫ t



∫

Z

∣∣h(s, xs–, v)
∣∣p

π (dv) ds ≤ E
∫ t



[
ρ
(
 + |xs–|g

)] p
 ds

≤ 
p
 –(a + b)

p


(
E|ξ |pg T +

∫ t


E sup

≤σ≤s

∣∣x(σ )
∣∣p ds

)
.

Similar to the computation of (.), it follows that

E
∫ t



∫

Z
pp–∣∣x(s) – D(s, xs)

∣
∣p–∣∣h(s, xs–, v)

∣
∣π (dv) ds

≤
[

(p – )p( + k)pπ (Z) +
√




√
a + b

](
 + E|ξ |pg

)
T

+
[

(p – )p( + k)pπ (Z) +
√




√
a + b

]∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds.

Hence, we have

E sup
≤s≤t

∫ s



∫

Z

(∣∣x(σ ) – D(σ , xσ ) + h(σ , xσ–, v)
∣
∣p –

∣
∣x(σ ) – D(σ , xσ )

∣
∣p)N(dσ , dv)

≤ c̄
(
 + E|ξ |pg

)
T + c̄

∫ t


E sup

≤σ≤s

∣∣x(σ )
∣∣p ds, (.)
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where c̄ = pp–
p
 –(a + b)

p
 + (p – )p( + k)pπ (Z) +

√




√
a + b. Combining (.), (.),

and (.)-(.), we obtain

E sup
≤s≤t

(∣∣x(s) – D(s, xs)
∣∣p) ≤ M + M

∫ t


E sup

≤σ≤s

∣∣x(σ )
∣∣p ds, (.)

where M = ( + k)pE|ξ |pg +
∑

k= c̄k( + E|ξ |pg )T , M = 
∑

k= c̄k . On the other hand, by
Lemma . and Assumption ., it follows that

E sup
≤s≤t

∣
∣x(s)

∣
∣p ≤ kE sup

≤s≤t
|xs|pg +


( – k)p– E sup

≤s≤t

(∣∣x(s) – D(s, xs)
∣
∣p)

≤ kE|ξ |pg + kE sup
≤s≤t

∣
∣x(s)

∣
∣p +


( – k)p– E sup

≤s≤t

(∣∣x(s) – D(s, xs)
∣
∣p).

Therefore,

E sup
≤s≤t

∣
∣x(s)

∣
∣p ≤ k

 – k
E|ξ |pg +


( – k)p E sup

≤s≤t

(∣∣x(s) – D(s, xs)
∣
∣p)

≤ k

 – k
E|ξ |pg +

M

( – k)p +
M

( – k)p

∫ t


E sup

≤σ≤s

∣
∣x(σ )

∣
∣p ds.

Therefore, the Gronwall inequality implies that

E sup
≤s≤t

∣
∣x(s)

∣
∣p ≤

[
k

 – k
E|ξ |pg +

M

( – k)p

]
e

M
(–k)p T .

The proof is complete. �

Remark . From Theorem ., we see that the pth moment will grow at most exponen-
tially with exponent M

(–k)p . It should be mentioned that (.) can be expressed as

lim sup
t→∞


t

log
(
E
∣∣x(t)

∣∣p) ≤ M

( – k)p . (.)

The inequality (.) shows that the pth moment Lyapunov exponent should not be greater
than M

(–k)p .

The next theorem shows that the pth exponential estimations implies the almost
surely asymptotic estimations, and we give an upper bound for the sample Lyapunov ex-
ponent.

Theorem . Under Assumption ., we have

lim sup
t→∞


t

log
∣
∣x(t)

∣
∣ ≤ 

√
a + b + (a + b) + π (Z)

( – k) , a.s. (.)

That is, the sample Lyapunov exponent of the solution should not be greater than

√

a+b+(a+b)+π (Z)
(–k) .
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Proof For each n = , , . . . , it follows from Theorem . (taking p = ) that

E
(

sup
n–≤t≤n

∣∣x(t)
∣∣

)
≤ βeγ n,

where β = +k
(–k) E|ξ |g + 

√
a+b+(a+b)+π (Z)

(–k) ( + E|ξ |g )T and γ = 
√

a+b+(a+b)+π (Z)
(–k) . Hence,

for any ε > , by the Chebysher inequality, it follows that

P
{
ω : sup

n–≤t≤n

∣∣x(t)
∣∣ > e(γ +ε)n

}
≤ βe–εn.

Since
∑∞

n= βe–εn < ∞, by the Borel-Cantelli lemma, we deduce that there exists an integer
n such that

sup
n–≤t≤n

∣
∣x(t)

∣
∣ ≤ e(γ +ε)n a.s. n ≥ n.

Thus, for almost all ω ∈ �, if n –  ≤ t ≤ n and n ≥ n, then


t

log
∣
∣x(t)

∣
∣ =


t

log
(∣∣x(t)

∣
∣) ≤ (γ + ε)n

(n – )
. (.)

Taking the limsup in (.) leads to an almost surely exponential estimate, that is,

lim sup
t→∞


t

log
∣∣x(t)

∣∣ ≤ γ + ε


=


√

a + b + (a + b) + π (Z)
( – k) , a.s.

The required assertion (.) follows because ε >  is arbitrary. �

5 Examples
Example . Let us return to equation (.),

dx(t) = k
[
λ – x(t)

]
dt + θ

√
x(t) dw(t), x() = x, (.)

where k,λ ≥ , θ > , and x > . w(t) is a one-dimensional Brownian motion.
Clearly, the diffusion coefficient of equation (.) does not satisfy the Lipschitz condi-

tion. Let k(t, u) = θk(u), we see that k(u) =
√

u is a nondecreasing, positive, and concave
function on [,∞) with k() =  and

∫

+

du
k(u)

= lim
ε→+

∫ +∞

ε

√
u

du = lim
ε→+

∫ +∞

ε

 d
√

u =  lim
ε→+

√
u|+∞

ε = ∞.

Then by the comparison theorem of differential dynamic systems we know that Assump-
tions . and . hold for equation (.).

Example . Consider the semi-linear NSFDEs with pure jumps

d
[
x(t) – .xt

]
= axt dt +

∫

Z
b(xt–)σ (t, xt–)vN(dt, dv), t ∈ [, T]. (.)
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Here D(t, xt) = .xt and a is a constant. Assume that b(·) satisfies the local Lipschitz con-
dition: for any N > , there exists a positive constant JN such that, for all ϕ,ψ ∈ Cg with
|ϕ|, |ψ | ≤ N and t ∈ [, T],

∣
∣b(ϕ) – b(ψ)

∣
∣ ≤ JN |ϕ – ψ |g .

σ (t, ·) satisfies Assumptions .-. and there exists a positive constant C̄ such that

sup
ϕ∈Cg ,t∈[,T]

∣∣σ (t,ϕ)
∣∣ ≤ C̄.

It is easily seen that equation (.) does not satisfy the non-Lipschitz condition of [, ],
so the result in [, ] does not apply to equation (.).

We assume that
∫

Z |v|π (dv) < ∞ and b(u), σ (t, u) are continuous in u for each u ∈
[,∞). Let

AN (x) =
[

a + JN C̄
∫

Z
|v|π (dv)

]
x, BN (t, x) = 

[
sup
|x|≤N

∣
∣b(x)

∣
∣

∫

Z
|v|π (dv)

]
k(t, x),

where k(t, x) satisfies Assumptions ., .. Obviously, the coefficients .x, ax, b(x)σ (t, x)v
satisfy Assumptions .-. and kN (t, x) = AN (x) + BN (t, x) satisfies Assumption ., by
Theorem ., we see that equation (.) has a unique solution x(t) on [, T].
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