Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Transient stability analysis in Multi-terminal VSC-HVDC grids

Endegnanew, A. G. and Uhlen, K. and Haileselassie, T. M. and Anaya-Lara, O. (2016) Transient stability analysis in Multi-terminal VSC-HVDC grids. In: 2016 Power Systems Computation Conference (PSCC). IEEE, Piscataway, N.J.. ISBN 978-88-941051-2-4

[img]
Preview
Text (Endegnanew-etal-PSCC-2016-Transient-stability-analysis-in-multi-terminal-VSC)
Endegnanew_etal_PSCC_2016_Transient_stability_analysis_in_multi_terminal_VSC.pdf - Accepted Author Manuscript

Download (533kB) | Preview

Abstract

A novel approach to transient stability analysis in multi-terminal high voltage direct current (MTDC) grids is presented in this paper. A symmetrical three-phase fault in an ac grid connected to a rectifier terminal of the MTDC grid causes the power injected into the dc grid to decrease, which in turn leads to a lower dc voltage in the MTDC grid. If dc voltage drops below a critical voltage limit before the ac fault is cleared, then the dc grid becomes unstable and its operation is disrupted. An analytical approach is proposed in this paper to calculate the critical clearing time of a fault in an ac grid behind a rectifier terminal beyond which dc voltage collapse occurs. A five-terminal MTDC grid modeled in EMTDC/PSCAD is used to validate the results obtained with the analytical method.