Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The impact of post-fault active power recovery ramp rates of wind turbines on transient stability in Great Britain.

Johnstone, Kevin and Bell, Keith and Booth, Campbell (2015) The impact of post-fault active power recovery ramp rates of wind turbines on transient stability in Great Britain. In: EWEA 2015 Annual Event, 2015-11-17 - 2015-11-20, Paris expo Porte de Versailles.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The predominant North-South active power flows across the border between Scotland and England are currently limited by stability considerations. As the penetration of variable-speed wind power plants in Great Britain grows, it is imperative that stability limits, operational flexibility, efficiency and system security are not unnecessarily eroded as a result. The study reported in this paper illustrates the impacts on critical fault clearing times and power transfer limits through this North-South corridor in the presence of increasing levels of wind power plants on the GB transmission system. By focussing on the behaviour of a representative reduced test system following a three-phase fault occurring on one of the two double-circuits of the B6 boundary, the impacts on transient stability margins are qualitatively identified. By altering the immediate post-fault active power recovery ramp-rate of the wind power plants, the transient stability performance of the grid with additional wind power can be significantly improved. The outputs of the project are intended to provide a basis for further detailed studies on a more realistic network model.