Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A multi-point performance matched aerofoil design algorithm for a scaled wind turbine rotor model

Martin, Steven and Day, Alexander (2015) A multi-point performance matched aerofoil design algorithm for a scaled wind turbine rotor model. In: 50th 3AF International Conference on Applied Aerodynamics. 3AF Association Aéronautique et Astronautique de France, Paris.

Text (Martin-Day-3AFCAA2015-A-multi-point-performance-matched-aerofoil-design-algorithm)
Martin_Day_3AFCAA2015_A_multi_point_performance_matched_aerofoil_design_algorithm.pdf - Accepted Author Manuscript

Download (590kB) | Preview


A search-based multi-point aerofoil design algorithm is presented which optimises a profile for a prescribed CL-α distribution and Reynolds number, Re. A real-coded genetic algorithm is used in conjunction with XFOIL and a geometrically constrained shape parameterisation method to produce smooth, manufacturable aerofoils given the required aerodynamic performance. The validated tool is used to produce a family of aerofoils to define a model rotor blade for a wind turbine with a similar axial induction factor along its length in a small scale laboratory environment to a full scale reference. It is hypothesised that given the similar axial induction and similar non-dimensional geometry, the model rotor will have a similar unsteady aerodynamic response to the full scale.