Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers

O'Leary, Richard L. and Hayward, Gordon (1999) Investigation into the effects of modification of the passive phase for improved manufacture of 1-3 connectivity piezocomposite transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 46 (3). pp. 511-516. ISSN 0885-3010

Full text not available in this repository. Request a copy from the Strathclyde author


The 1-3 connectivity composite transducers comprise active piezoceramic pillars within a passive polymer matrix. The first stage in manufacturing the 1-3 material is to produce a bristle block (comprising a solid stock of active material with protruding pillars) by injection moulding or by dicing a piece of ceramic using precision sawing equipment. The bristle block is filled with a reactive polymer liquid that produces the passive polymer phase, and the filled block is machined to the desired dimensions. For optimum performance, the polymer phase should have complementary interaction with the ceramic phase as well as imparting dimensional stability. Epoxy-based polymers are the most usual passive materials because of their low viscosity in the uncured state and solvent resistance, coupled with their excellent adhesive, mechanical, and electrical properties. However, the curing of epoxy resins results in shrinkage of the polymer matrix and internal stress within the passive phase. This can lead to prestressing of the active ceramic material, distortion of pillars, reduction in the parallelism between the sides of pillars, acid, in certain circumstances, warpage of transducers. This is particularly evident when the solid stock in the bristle block is relatively thin. This paper reports the in situ modification of epoxy in the bristle block by UV-based low temperature polymerization of acrylate monomers within the epoxy matrix prior to polymerization of the epoxy resin. Internal stress measurements are presented to quantify the influence of this modification via a reduction of internal stress within the polymer matrix. Results from finite element analysis emphasise the conclusions of the experimental work, and examples of manufactured devices are presented. Composite transducer performance is assessed by laser measurement of surface displacement profiles, and a 50% improvement in surface displacement magnitude was observed for the modified devices.