Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Relevance of polynomial matrix decompositions to broadband blind signal separation

Redif, Soydan and Weiss, Stephan and McWhirter, John G. (2017) Relevance of polynomial matrix decompositions to broadband blind signal separation. Signal Processing, 134. pp. 76-86. ISSN 0165-1684

[img]
Preview
Text (Redif-etal-SP-2017-Relevance-of-polynomial-matrix-decompositions)
Redif_etal_SP_2017_Relevance_of_polynomial_matrix_decompositions.pdf - Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong decorrelation and spectral majorization, the PEVD and its theoretical foundations will be briefly outlined. The paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the diagonalization and spectral majorization capabilities of PEVD algorithms—to define broadband BSS solutions that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband methods.