Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A hybrid integer and constraint programming approach to solve nurse rostering problems

Rahimian, Erfan and Akartunali, Kerem and Levine, John (2017) A hybrid integer and constraint programming approach to solve nurse rostering problems. Computers & Operations Research, 82. pp. 83-94. ISSN 0305-0548

[img] Text (Rahimian-etal-COR-2017-A-hybrid-integer-and-constraint-programming-approach)
Rahimian_etal_COR_2017_A_hybrid_integer_and_constraint_programming_approach.pdf - Accepted Author Manuscript
Restricted to Repository staff only until 27 July 2018.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (609kB) | Request a copy from the Strathclyde author

Abstract

The Nurse Rostering Problem can be defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality schedules are a reduction in outsourcing costs and an increase in job satisfaction of employees. In this paper, we present a hybrid algorithm, which combines Integer Programming and Constraint Programming to efficiently solve the highly-constrained Nurse Rostering Problem. We exploit the strength of IP in obtaining lower-bounds and finding an optimal solution with the capability of CP in finding feasible solutions in a co-operative manner. To improve the performance of the algorithm, and therefore, to obtain high-quality solutions as well as strong lower-bounds for a relatively short time, we apply some innovative ways to extract useful information such as the computational difficulty of in- stances and constraints to adaptively set the search parameters. We test our algorithm using two different datasets consisting of various problem instances, and report competitive results benchmarked with the state-of-the-art algorithms from the recent literature as well as standard IP and CP solvers, showing that the proposed algorithm is able to solve a wide variety of instances effectively.