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Abstract

Anomalies in the wind field and structural anomalies can cause unbalanced
loads on the components and structure of a wind turbine. For example, large
unbalanced rotor loads could arise from blades sweeping through low level jets
resulting in wind shear, which is an example of anomaly. The lifespan of the
blades could be increased if wind shear can be detected and appropriately com-
pensated. The work presented in this paper proposes a novel anomaly detection
and compensation scheme based on the Extended Kalman Filter. Simulation
results are presented demonstrating that it can successfully be used to facilitate
the early detection of various anomalous conditions, including wind shear, mass
imbalance, aerodynamic imbalance and extreme gusts, and also that the wind
turbine controllers can subsequently be modified to take appropriate diagnostic
action to compensate for such anomalous conditions.
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1. Introduction1

The controller for a wind turbine has the basic objective of ensuring that2

the turbine operates according to its design strategy; that is, rotor torque, rotor3

speed and power are maintained at the appropriate values according to wind4

speed. In addition, for large wind turbines the controller is required to reduce5

various structural loads on the blades, rotor and drive-train.6
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Nomenclature7

α severity of wind shear8

αc confidence confirmation limit9

αd confidence detection limit10

β pitch angle11

χ2 chi-squared distribution12

ε phase shift between θ and θa13

ĈT modified thrust coefficient for dynamic inflow model14

V̂s see Equation (36)15

λ tip-speed ratio16

λR modified tip-speed ratio for dynamic inflow model17

E {·} expected value18

µ see Equation (42)19

µc see Equation (44)20

Ω rotor speed21

V mean wind speed22

φ set angle error signal23

ρ air density24

σv turbulence intensity25

θ arbitrary azimuth angle preset by the EKF26

θa actual azimuth angle of the the blade27

θd phase difference between the Mx and My BRBM measure-28

ments29

R̃ measurement noise covariance30

ξ0 Gaussian noise31

a1, b1 deterministic wind speed variation across the rotor in the hor-32

izontal and vertical directions, respectively33

ad, bd coefficients for the point wind speed model34

AR rotor disc area35
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Cp power coefficient36

Cmx in-plane blade root bending moment coefficient37

Cmy out-of-plane blade root bending moment coefficient38

e EKF innovation error39

g gravity40

ga signature vector of the wind anomaly41

h tower height42

ho reference height for modelling wind shear43

Ha signature matrix of the wind anomaly44

Jf Jacobian matrix of the nonlinear function, f(xk−1)45

Jg Jacobian matrix of the nonlinear function, g(xk−1)46

K Kalman gain47

Lt turbulence length of the spectrum48

M1 see Equation (28)49

M2 see Equation (29)50

Mb blade mass51

MI/P in-plane blade root bending moment52

MO/P out-of-plane blade root bending moment53

N number of blades54

Ndf degrees of freedom55

P estimate error covariance56

Q process noise covariance57

R rotor radius58

S EKF innovations error covariance59

SD Dryden spectrum60

Sv Von Karman spectrum61

Tf aerodynamic torque62

Ta anomaly starting time63
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Tc time interval for anomaly confirmation64

v process noise65

V0 turbulence with added mean wind speed66

Va, Vb components of the effective wind speed, Vs67

Vd point wind speed68

Vp, Va1, Vb1 stochastic components of the effective wind speed69

VR wind speed at rotor70

Vs effective wind speed71

V(anomaly) wind speed affected by a given wind anomaly72

V(gust) wind gust model73

w measurement noise74

Wa, Wb, Wc effective wind speed models with different parameters75

ACT anomaly confirmation test76

ADT anomaly detection test77

BRBM blade root bending moment78

DNV-GL Det Norske Veritas and Germanischer Lloyd79

EKF Extended Kalman Filter80

FMM first moment of mass81

IBC individual blade control82

IEC International Electrotechnical Commission83

IPC individual pitch control84

LIDAR light detection and ranging85

Mx in-plane86

My out-of-plane87

O&M operations and maintenance88

PI control proportional-integral control89

Supergen Sustainable Power Generation and Supply90
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Modern wind turbine controllers usually achieve the basic objectives very91

well, and an anomaly detection and compensation scheme is introduced here92

to increase the functional capability of the (baseline) controller. Operating in-93

dependently from the baseline controller, it can detect various anomalies (or94

anomalous conditions), including wind shear, extreme gusts, blade mass imbal-95

ance and aerodynamic imbalance. By detecting and subsequently compensating96

for anomalies, it would reduce the number of unnecessary shut-downs caused by97

the anomalies, resulting in increased energy production, and further mitigate98

loads on the turbine, resulting in reduced operations and maintenance (O&M)99

costs or life-time extension.100

The anomaly detector uses an Extended Kalman Filter (EKF) [1, 2] that is101

primarily based on an effective wind field model [3] and a nonlinear 3 bladed102

rotor (aerodynamic) model. It should be noted that the main contribution of103

the work is neither in the EKF nor in the models that the EKF is based on.104

Instead, to achieve the aforementioned novel objective, i.e. anomaly detection105

and compensation, a standard filtering algorithm (i.e. the EKF) and existing106

models are adapted.107

A LIDAR (light detection and ranging) system could be utilised to achieve108

similar results as it allows the rotor speed and other operational control parame-109

ters to be adjusted to an approaching wind field before it reaches the turbine [4].110

However, the use of a LIDAR is costly, and the model-based anomaly detection111

and compensation algorithm proposed here can achieve the same objective at112

significantly reduced cost (i.e. without a LIDAR). Hence, the main contribution113

of this work, in more detail, is that an anomaly detection and compensation al-114

gorithm is proposed here to increase the functional capability of the existing115

baseline controller at reduced cost; that is, without the need for an expensive116

LIDAR.117

Although work on anomaly detection using a LIDAR is becoming more pop-118

ular in the literature [4, 5, 6, 7], work on this topic without the use of a LIDAR119

is still limited [8, 9, 10]. Moreover, while the work presented in [8, 9, 10] is120

dedicated to gust detection, the work presented here is more comprehensive121

dealing with various types of anomalies. It is important to note that this paper122

deals with “anomalies”, which should be separated from “faults”. Anomalies in-123

clude anomalous wind conditions, such as wind shear and gusts, and structural124

anomalies, such as mass imbalance and aerodynamic imbalance, while faults125

include actuator (e.g. pitch actuator) and sensor failures. For research on fault126

detection, readers are referred to [11, 12, 13].127

An EKF requires that the wind field model be represented in the form of128

a lumped parameter ordinary differential equation model. A wind field model,129

which meets this requirement, has been developed in [3]. It outputs “effective130

wind speeds” for each blade and the rotor such that rotor thrust, torque and131

in-plane (Mx) and out-of-plane (My) blade root bending moments (BRBMs) are132

represented reasonably accurately for frequencies up to the 1P spectral peak,133

which is due to rotational sampling [14, 15]. More specifically the auto and134

cross-spectral density functions for the forces and torques are accurate up to135

and including a frequency of 1P.136
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Figure 1: EKF estimates states that are not measurable or measured.

The wind field model is improved in this paper to include a model of dynamic137

inflow, hence to improve the accuracy of the EKF. To further improve the138

anomaly detection capabilities, this wind-field model could, if necessary, be139

extended to increase the accuracy to higher multiples of P at the cost of increased140

computational demand.141

A nonlinear 3 bladed aerodynamic model, suitable for use with the wind142

field model, employs standard aerodynamic coefficient models for rotor torque143

and Mx and My BRBMs [3]. The coefficients, which are functions of wind144

speed, tip-speed ratio, pitch angle, etc, are derived using Det Norske Veritas145

and Germanischer Lloyd’s (DNV-GL) Bladed. It also takes into account the146

gravitational loading on the blades.147

The tower dynamics could be included in the model for designing the EKF,148

but in return the complexity of the EKF would increase and become more149

computationally demanding. In any case, it does not seem to be necessary since150

the EKF still performs satisfactorily without the tower dynamics included in151

the model, as the results throughout the paper demonstrate.152

The EKF is designed to track measurements of aerodynamic/hub torque and153

Mx and My BRBM of each blade and, in turn, to provide estimates of the states154

of the wind field and the gravitational loading, etc. on the blades as depicted in155

Figure 1. By monitoring these estimates (which are not measured or measurable156

in real life), various anomalies can be detected.157

To enable detection of gusts, the anomaly detector is extended. Detection of158

gusts, unlike other anomalies, cannot be achieved by directly monitoring states159

estimated by the EKF. Instead, the EKF innovations error is used to monitor160

changes in variable correlation. Such changes are matched through best fit to a161

modelled anomalous scenario, e.g. extreme operating gust or extreme coherent162

gust. A set of modelled anomalies are derived from equations provided by163

International Electrotechnical Commission (IEC) 61400-1 (under the section,164

Extreme Conditions) [16].165

Diagnostic features are also added to the anomaly detection scheme to isolate166

individual anomalies, estimate their magnitudes, and compensate such anoma-167

lies, for example using Individual Pitch Control (IPC) [17, 18], Individual Blade168

Control (IBC) [19] or open-loop control [20, 21]. This paper focuses more on the169

detection part and less on the compensation part, and therefore only wind shear170
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and gust compensation using IPC and open-loop control, respectively, following171

the detection of wind shear and gust, is reported.172

The EKF based anomaly detector and the models required by it are described173

in Section 2. Simulation results on anomaly detection are presented in Section 3.174

The extension of the anomaly detector for gust detection is reported in Section175

4, and anomaly compensation is described in Section 5. Conclusions are drawn176

and future work discussed in Section 6.177

The illustrative turbine in this paper is the Supergen (Sustainable Power178

Generation and Supply) Wind 2 MW exemplar wind turbine, which is a 3179

bladed, horizontal-axis turbine, designed for variable-speed and pitch-regulated180

operation.181

Anomalies that are detected in this paper are blade mass imbalance, wind182

shear, aerodynamic imbalance and extreme (coherent and operating) gust. Mass183

imbalance may occur due to blade icing in cold conditions and is detected in184

this paper by estimating each blade mass, Mb. Wind shear, variation in wind185

speed across the rotor disc in the vertical direction, can be caused by various186

factors including low level jets and weather front. It is detected in this paper187

by estimating deterministic wind speed variation across the rotor in the vertical188

direction, b1. Aerodynamic imbalance, which can be caused by error in blade set189

angle, is detected in this paper by estimating set angle error signal, φ. Extreme190

gust can be caused by various factors including turbulence due to friction, wind191

shear, and solar heating of the ground. It is detected in this paper by utilising192

the EKF innovation error, e. Sections 3 and 4 demonstrate the state estimation193

and the anomaly detection in detail. When modelling these anomalies in Bladed,194

we use appropriate values to ensure that the anomalies are practical and realistic195

by consulting industrial experts.196

2. Anomaly Detection Scheme197

To facilitate early detection of anomalous operating conditions, an anomaly198

detector is developed, which allows the wind turbine controller or operator to199

take appropriate and timely action. It is based on an EKF, which requires200

accurate models. An effective wind field model and a nonlinear 3 bladed aero-201

dynamic model are utilised for designing the EKF based anomaly detector in202

order to detect various anomalous conditions. These models, their validation203

and the design of the EKF based on these models are described in this section.204

As mentioned in Section 1, the main contribution of the work is neither205

in the EKF nor in the models the EKF is based on. Instead, to achieve the206

novel objective, i.e. anomaly detection and compensation without the use of a207

LIDAR, a standard filtering algorithm (i.e. EKF) and existing models, both of208

which are reported in this section, are adapted.209

2.1. Wind Field Model210

The wind field model outputs azimuthally and time varying effective wind211

speeds, Vs, for each blade and rotor so that the rotor thrust, torque and Mx212
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Figure 2: Wind field model and 1 of 3 blades model including frequencies up to the 1P spectral
peak.

and My BRBMs are represented reasonably accurately at frequencies up to and213

including the spectral peak that corresponds to 1P. Effective wind speed, Vs,214

is composed of 3 components, Vp, Va and Vb, as shown in Figure 2. More215

specifically, the auto and cross-spectral density functions for the forces and216

torques are reasonably accurate at frequencies up to and including 1P.217

The wind field on each blade consists of stochastic and deterministic com-218

ponents. Wind speed is in general measured on the nacelle by an anemometer,219

making unrealistic a direct correlation between the effects of the measured wind220

speeds and loads on the blades.221

As the wind speed varies across the rotor, a blade element will experience
different wind speeds as it rotates. The difference in wind speed across the rotor
is caused by deterministic components, such as wind shear, tower shadow and
blade mass imbalance, and stochastic components, such as turbulence. The wind
field model represents separately the effects of the deterministic and stochastic
components on the blades. The model of the wind field is depicted in Figure 2
and has the following structure [3]:

Vs(θ, t) = V + Vp(t) + (a1 + Va1(t))sin(θ)︸ ︷︷ ︸
Va

+ (b1 + Vb1(t))cos(θ)︸ ︷︷ ︸
Vb

+ · · · (1)

The wind speed, Vs(θ + 2π(i−1)
3 , t), induces the moments on blade i (for i =222

1, . . . , N) where N is the number of blades. V denotes the mean wind speed,223

and Vp, Va1 and Vb1 are coloured noise processes representing the stochastic224

terms. More specifically Vp is associated with turbulence (refer to [3] for further225

details), and Va1 and Vb1 are respectively used to generate Va and Vb that226
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Figure 3: a1 and b1; variations in the horizontal and vertical axes.

eventually add the 1P spectral peak to Mx and My BRBMs.227

As depicted in Figure 2, a1 and b1 denote deterministic variations in wind228

speed across the rotor in the horizontal and vertical directions, respectively. The229

transfer functions, Wa(s), Wb(s) and Wc(s), are part of the wind field model230

that have point wind speed inputs, Vdi (for i = 1, 2, 3), and outputs effective231

wind speed components [22], i.e. Vp, Va1 and Vb1. The modules (or sub-models)232

on the right-hand side of the figure are explained in the following sub-section.233

The deterministic components on My BRBM is dominated by wind shear
(i.e. vertical variation in wind speed), while that on Mx BRBM is dominated
by gravity. Gravity is at its maximum value at the blade horizontal position
while wind shear causes the wind speed to be at its maximum value at the blade
vertical position. When the situation is free of nacelle tilting, yaw misalignment,
etc., the phase difference between the Mx and My BRBM measurements, i.e. θd
in Figure 3, should be close to 90◦. However, the wind turbine always has such
aspects, and θd can be calculated as

tan θd =
b1
a1

(2)

As discussed later in Section 3, θd is an important parameter that can be mon-234

itored to detect various anomalies, including wind shear and wind veer, which235
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are vertical and horizontal differences in wind speed, respectively.236

The point wind speeds, i.e. Vdi (for i = 1, 2, 3), in Figure 2 can be described
in the frequency domain by the Von Karman spectrum [22]:

Sv(ω) = 0.476σ2
v

Lt

V̄

(1 + (ωLt

V̄
)2)5/6

(3)

where Lt = 6.5h denotes the turbulence length of the spectrum, h height and σv
the turbulence intensity. In the anomaly detection scheme, it is approximated
by the Dryden spectrum:

SD(ω) =
1

2π

b2d
ω2 + a2

d

(4)

The values of ad and bd, for which the Dryden spectrum best approximates the
Von Karman spectrum, are

ad = 1.14
V̄

Lt
(5)

bd = σv
√

2ad (6)

The corresponding point wind speed model is

Vd = Vd(s)ξ0 (7)

=
V̄ bd
s+ ad

ξ0 (8)

where ξ0 denotes Gaussian noise.237

2.2. Nonlinear 3 Bladed Aerodynamic Model238

A 3 bladed aerodynamic model is used with the wind field model introduced239

in Section 2.1 to calculate the in-plane (Mx) and out-of-plane (My) BRBM and240

the contribution to torque for each blade. The model for one of the 3 blades241

contained in the complete model together with the wind field model is shown242

in Figure 2, where Ω is rotor speed and β pitch angle.243

Aerodynamic torque, Tf , is estimated in the module named “Aerodynamics”
in Figure 2 using

Tf =
1

2
ρπV 2

0 R
3Cp(λ, β)

λ
(9)

where β is pitch angle, and the tip-speed ratio, λ, is defined as

λ =
RΩ

V0
(10)

R denotes the rotor radius, Cp the aerodynamic power coefficient and ρ the air244

density. The parameters of the 2MW Supergen exemplar turbine are used.245
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The resulting wind speed, Vs, is used by the the modules named “BBM Mx”
and “BBM My”, respectively, in Figure 2 for estimating the Mx and My BRBM.
Similar equations to Equation (9) are utilised for these modules as follows:

MI/P =
1

2
ρπV 2

s R
3Cmx(λ)

3
+ gMbcosθa (11)

MO/P =
1

2
ρπV 2

s R
3Cmy(λ)

3
(12)

Note that these equations are valid when Vs from the wind field model described246

in Section 2.2 is used. Cmx and Cmy are respectively in-plane and out-of-plane247

bending root moment coefficients [3], g gravity, Mb the first moment of mass248

(FMM) of each blade and θa the actual azimuth angle of the the blade. The249

second term in Equation (11) represents gravitational loading. Since gravity has250

little impact on My BRBM, given that the tilt angle is small, yaw misalignment251

is minimal, etc, it is excluded from Equation (12).252

To model mass imbalance between the 3 blades, Equation (9) can simply be
replaced with the sum of Equation (11) for blades 1, 2 and 3 as follows:

Tf = MI/P,1 +MI/P,2 +MI/P,3 (13)

Gravitational term in Equation (11) cancels out when summed in Equation (13)253

only if there is no mass imbalance.254

2.3. Validation255

The model developed in Matlab/Simulink R© that combines the wind field256

model and the 3 bladed aerodynamic model described in Sections 2.1 and 2.2,257

respectively, is validated against the aero-elastic Bladed model for the same258

turbine, the 2MW Supergen exemplar turbine. The former model is used for259

developing the EKF in Section 2.4.260

Simulations are run for 400 s with a mean wind speed of 8 m/s and turbulence261

intensity of 10 %. The power spectra of Mx and My BRBM from the model262

are presented in comparison to that from the Bladed model in Figures 4 and263

5. Note that hub torque is the sum of Equation (11) for blade 1, 2 and 3 (see264

Equation (13)), and therefore the model for hub torque does not need to be265

validated separately. The time-series results are not very meaningful here since266

the Matlab/Simulink and Bladed models experience different wind speeds in267

time.268

Figures 4 and 5 demonstrate that Mx and My BRBM, respectively, from the269

Matlab/Simulink and Bladed models have similar spectra at low frequencies270

especially both displaying 1P peak (around 1.8 rad/s). Since the model is271

developed to be reasonably accurate for frequencies up to 1P, they are not272

expected to be similar at high frequencies. The red plot in Figure 4 is discussed273

in the following section.274

The EKF is designed to ensure that any remaining discrepancy is reduced275

even further and also that the time response (of the EKF designed on the basis276

of the Matlab/Simulink model) tracks the measurements from the Bladed model277

closely.278
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Figure 4: Power spectrum of Mx BRBM from the Matlab/Simulink model vs Bladed model
vs EKF.
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2.4. Extended Kalman Filter279

The combined nonlinear models introduced in Sections 2.1 and 2.2 are rewrit-
ten in the following discrete form:

xk = f(xk−1) + vk−1 (14)

yk = g(xk) + wk (15)

where f(xk−1) and g(xk) are the nonlinear system and measurement models as
described in Sections 2.1 and 2.2, respectively. For more details on the models
used for f(xk−1) and g(xk), readers are referred to Appendix A. vk−1 represents
process noise, which is represented by Gaussian noise, ξ0, from Equation (7),
and wk denotes measurement noise. The measurement noise covariance, R̃k,
and the process noise covariance, Q, are given by

E
[
vk−1v

T
k−1

]
= Q (16)

E
[
wkw

T
k

]
= R̃Tk (17)

R̃k is updated online through the use of an online covariance algorithm, while280

Q is assumed to be constant.281

The model forecast step or predictor uses the following equations:

x−k ≈ f(xk−1) (18)

P−k = Jf (xk−1)Pk−1Jf (xk−1) +Qk−1 (19)

where Jf (xk−1) denotes the Jacobian matrix of the nonlinear function, f(xk−1).
x−k and P−k denote the a priori state estimate and a priori estimate error co-
variance, respectively. The data assimilation step or corrector uses the following
equations:

xk ≈ x−k +Kk(yk − g(xk)) (20)

Kk = P−k J
T
g (xk)(Jg(xk)P−k J

T
g (xk) + R̃k)−1 (21)

Pk = P−k −KkJg(xk)P−k (22)

where Jg(xk) denotes the Jacobian matrix of the nonlinear function, g(x), and282

Kk is the Kalman gain.283

Since the difference between two positive-definite matrices may result in a
non positive-definite matrix, which could result in numerical instability, Equa-
tion (22) is modified as

Pk = (I −KkJg(xk))P−k (I −KkJg(xk))T +KkR̃kK
T
k (23)

Now, each term in the equation is positive-definite, and Pk is positive definite284

because the sum of two positive-definite matrices is positive-definite.285

For more details on the formulation of EKF, readers are referred to [23, 24,286

25].287
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3. Anomaly Detection288

The use of the EKF presented in Section 2 for detecting various anoma-289

lous scenarios, e.g. wind shear, mass imbalance and aerodynamic imbalance, is290

described with simulation results in this section. For gust detection, an extra291

feature needs to be incorporated into the detector, and this topic is presented292

in Section 4.293

The EKF is developed in Matlab/Simulink based on the models presented in294

Sections 2.1 and 2.2, but the measurements required by the EKF are obtained295

directly from the Bladed model that represents the same turbine, i.e. 2MW296

Supergen exemplar turbine. The Bladed model is a high fidelity aero-elastic297

model that is highly detailed including all the necessary blade dynamics, tower298

dynamics, etc. The modelling discrepancy between the two models provides299

a degree of model-plant mismatch to test the robustness of design. As previ-300

ously mentioned, the EKF tracks measurements of hub torque and Mx and My301

BRBMs from the Bladed model, and provides state estimation, such as wind302

field components and blade mass.303

To make simulations more realistic, extra noise is added to the measurements304

throughout this paper. An example is depicted in Figure 6, in which measure-305

ment of Mx BRBM is contaminated with noise (green), which is inputted to the306

EKF as opposed to the original noise-free measurement (black). Despite the307

added noise, the estimate by the EKF (red) is almost noise-free due to compu-308

tation of the measurement noise covariance, R̃k in Equation (21), online by the309

EKF as depicted in Figure 6. The corresponding power spectra in Figure 4 (red310
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and blue) also demonstrate similar characteristics in the frequency domain.311

Examples of estimation of the states, the stochastic and deterministic wind312

speed components, Vp, Va and Vb (see Figure 2), are depicted in Figure 7a. These313

wind speed components, when aggregated, become the effective wind speed Vs314

experienced by one of the blades as depicted in Figure 7b. When Vs is used315

with the blade model, i.e. Equations (11) and (12), it mimics the effect of low316

frequency turbulence together with 1P rotational sampling. The EKF, at the317

same time, estimates other important states, such as azimuth angle, mass of318

each blade, etc. Monitoring of these states facilitates the detection of anomalies319

in various situations.320

For example, the azimuth angle (i.e. angular position) and mass of each blade321

can be estimated and calculated as follows. The initial condition (arbitrary value322

predetermined by the EKF) for the azimuth angle of blade 1 is assumed to be323

at the 3 o’clock position by the EKF. However, the azimuth angle of blade 1 of324

the Bladed model (which simulates the turbine in this paper), that the EKF is325

monitoring, may not be at the 3 o’clock position when the EKF starts to monitor326

the Bladed model. The difference (i.e. phase shift) needs to be calculated and327

taken into account by the EKF as follows. Note, this is paramount for correctly328

identifying gravitational loading, wind shear, wind veer, etc as discussed below.329

The gravity term in Equation (11) is rewritten as

gMb,icosθa = gMb,icos(θ + (i− 1)2π/3− ε) (24)

for i = 1, 2, 3 (3 being the number of blades). θa denotes the azimuth angle of
the turbine being monitored, θ the arbitrary azimuth angle preset by the EKF
(i.e. at the 3 o’clock position when the EKF starts) and ε the phase shift such
that

θa = θ − ε (25)

For blade 1, i.e. i = 1, Equation (25) can be substituted into Equation (24)
to obtain

gMb,1cos(θ − ε) = gMb,1(cosε cosθ + sinε sinθ) (26)

= M1cosθ +M2sinθ (27)

where

M1 =gMb,1cosε (28)

M2 =gMb,1sinε (29)

M1 and M2 are states estimated by the EKF. These state estimates are subse-
quently used by the output equation, Equation (11), and also allow Mb and ε
to be calculated as follows:

Mb =
√
M2

1 +M2
2 (30)

ε = tan−1(
M2

M1
) (31)
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The FMM of blade 2 estimated by the EKF is depicted in Figure 8. The red330

plot is when there is 136 kg of ice (2.55% of the blade mass and ice density of331

700 kg/m3) on blade 2 and the blue plot is when there is no ice on the blade.332

The estimates match the Bladed model parameters within 5 %. The result333

therefore demonstrates that the anomaly detector can be used for detecting334

mass imbalance, which could arise due to blade icing.335

The phase shift, ε, between the arbitrary azimuth angle and the actual az-336

imuth angle is depicted in Figure 9. As previously mentioned, the EKF assumes337

that blade 1 starts at the blade horizontal position (3 o’clock). However, blade 1338

of the Bladed model starts at the blade vertical position (12 o’clock). The figure339

demonstrates that ε is correctly estimated, ε = 90◦. This estimate updates the340

EKF, which can now be used to correctly identify gravitational loading, wind341

shear, wind veer, etc.342

Deviations in a1, b1 and θd (in Equation (2)) from typical values can indi-343

cate anomalies in wind speed across the rotor, e.g. vertically (wind shear) and344

horizontally. As mentioned in Section 2.1, θd would never in reality be 90◦ due345

to tilt angle, blade dynamics and so on. Note that the nacelle tilt angle is 4◦346

for the turbine considered here. θd, varies with mean wind speed as depicted in347

Figure 10. When θd deviates from the plot in the figure, anomalies such as an348

increase in wind shear, wind veer or yaw misalignment can be suspected. More349

specifically, b1 can be used for detecting wind shear and a1 for detecting wind350

veer or yaw misalignment. An example of detecting wind shear by monitoring351

b1 is given below.352

As discussed in the context of Figure 3, the state b1 represents variation in
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using the following equation:

V (h) = V (ho)(
h

ho
)α (32)

where h denotes height above the ground and ho a reference height. α determines353

severity of wind shear.354

Two simulations identical except for severity of wind shear are depicted in355

Figure 11. α from Equation (32) is increased by 2 times from the blue to356

red plots. The figure shows that monitoring b1, estimated by the EKF, could357

successfully be used to detect wind shear.358

The anomaly detector can also be used for detecting aerodynamic imbalance.359

For instance, when there is a set angle error, φ, of 1◦ in blade 2, such that360

the collective pitch angle (the baseline controller acts through collective pitch361

angle) is slightly increased overall as depicted in Figure 12a, the magnitude of362

the error signal (set angle error signal) between the measurement and estimate363

of My BRBM is increased as depicted in Figure 12b. This offset can therefore364

be used to detect aerodynamic imbalance, i.e. a blade set angle error in this365

example.366

Dynamic inflow, i.e. the fractional decrease in wind speed between the free367

stream wind (what the wind speed would be without the turbine present) and368

the wind speed interacting with the turbine, continuously changes with the369

operating conditions. The models introduced in Section 2.1 is improved to370

include this effect. The following dynamic inflow model is used [26]:371
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V̇R =
3

4
(AR(V − VR)VR −

1

4
ARV

2
RĈT (λR, β))/R3 (33)

where VR denotes wind speed at rotor, AR rotor disc area, V wind speed from
Equation (1), R rotor radius and ĈT a modified CT table from [26]. Equations
(11) and (12) are modified as follows:

MI/P =
1

2
ρπV̂ 2

s R
3Cmx(λ)

3
+ gMbcosθa (34)

MO/P =
1

2
ρπV̂ 2

s R
3Cmy(λ)

3
(35)

where

V̂s = VR(1 +
1

4
ĈT (λR, β)) (36)

The incorporation of the dynamic inflow model improves the accuracy of the372

EKF. For instance, when the turbine switches from operating below rated to373

above rated, a large peak is produced on the estimate of Va (green) at around374

390 s in Figure 13. This is because the effect of dynamic inflow becomes more375

significant when switching from operating below rated to above rated. With376

the dynamic inflow model properly modelled and included, the EKF now takes377

into account the effect of dynamic inflow, and the estimation is improved; that378

is, the peak is now removed (black).379

4. Extension of the Anomaly Detector for Gust Detection380

The wind field model described in Section 2.1 does not include the effects of
wind gust-like events and therefore a model mismatch (between the events and
the model used by the EKF) occurs in the EKF when a gust happens. Consider
a model for extreme wind gusts as follows:

V(anomaly) =

{
Vs(θ, t) t < Ta

Vs(θ, t)± V(gust) t ≥ Ta

(37)

When a gust occurs, that is, after the anomaly starting time, Ta, the effective
wind speed is affected by the magnitude and duration of the gust. These changes
in variable correlation can be quantified by taking the expectation (E {·}) of the
EKF innovations error, ek, given by

ek = yk − g (xk) (38)

Expanding Equation (38) in Taylor series about xk−1, the expectation of the
innovations error is given by

E {ek|yk} = Jg (xk−1) Jf (xk−1)E
{
x̃k|k−1|yk−1

}
(39)
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Figure 13: Dynamic inflow model.

where x̃k|k−1 is the error in state estimates due to the anomaly prior to the
measurement update (i.e. Equations (20), (21) and (22)) of the EKF. The
calculation of state estimates posterior to the EKF measurement update can be
obtained with a similar approach as follows:

E
{
x̃k|k|yk

}
= Jf (xk−1)E

{
x̃k|k−1|yk−1

}
+KkE {ek|yk} (40)

It is therefore possible to define linear dependence of E
{
x̃k|k|yk

}
on the anomaly

as follow [27]:

E
{
x̃k|k|yk

}
= Ha (k, Ta) ga, k ≥ Ta (41)

In Equation (41), the anomaly is described by signature matrix of the anomaly
magnitude, Ha (k, Ta), affecting the EKF outputs, state estimates and signature
vector of its behaviour, ga. The signature matrix is time-varying allowing the
magnitude of the wind gust to evolve in time. The measurement of the drift in
standard deviation produced by the anomaly is determined by the Mahalanobis
distance of the innovations error as follows:

µk = eTk S
−1
k ek (42)

where Sk is the EKF innovations error covariance given by

Sk = Jg(xk)PkJ
T
g (xk) + R̃k (43)

Equation (42) is used to detect unmodelled anomalies, and this process is re-
ferred to as anomaly detection test (ADT) here. The ADT follows the central
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χ2 distribution with Ndf degrees of freedom and αd confidence detection limit.
To avoid false alarms caused by noise, a positive ADT is followed by an anomaly
confirmation test (ACT):

µc,k =

Ta+Tc∑
k=Ta

eTk S
−1
k ek (44)

The ACT follows the same distribution but has Ndf (Tc + 1) degrees of free-
dom, a suitable interval time for anomaly confirmation, Tc, and αc confidence
confirmation limit. The following stopping rules need to be defined:

ADT(alarm) =
{
k > 0, µk > χ2

N,αd

}
(45)

ACT(alarm) =
{
k > 0, µk > χ2

N×(Tc+1),αc

}
(46)

Practical considerations for the detection parameters are: αc > αd and Tc

longer than half the EKF convergence time. To implement a diagnostic action
upon detection and confirmation of a wind gust, the signature matrix has to
be estimated; that is, in order to calculate the maximum likelihood ratio in
Equation (44), the signature matrix estimate is given by

Ha (k, Ta) =
[
gTa J

T
f (xk−1) JTg (xk−1)S−1

k Jg (xk−1) Jf (xk−1)
]−1×[

gTa J
T
f (xk−1) JTg (xk−1)S−1

k

]
g−1

a (47)

The estimation of the signature matrix allows the detection of a wind gust at any381

mean wind speed. The signature vector is modelled a priori using the design382

standards described in [16]. Goodness of fit is used to match the unknown383

detected anomaly to a modelled signature vector, e.g. operating wind gust384

or coherent wind gust. In practice, gust-like events can have any shape and385

magnitude. The detection begins with low goodness of fit and increases as386

soon as the estimated signature matrix adapts to the anomaly. The signature387

matrix is updated until the anomaly has passed. If the detector cannot isolate388

the anomaly as neither operating nor coherent gust, the anomalous data is389

stored and classified as unknown anomaly, thus providing the detector with an390

adaptability feature.391

Both extreme operating gusts and extreme coherent gusts are generated in392

Bladed. An extreme operating gust is modelled at a mean wind speed of 14 m/s.393

It has the Mexican hat shape with a recurrence period of 50 year as reported in394

[16].395

The detection of an operating gust is demonstrated in Figure 14, in which396

the operating gust starts at 120s. The confirmation threshold for blade 1, Vb1397

(wind speed estimate for blade 1), and µc,k are included in the figure. The hub398

wind speed that the Bladed model experiences is also included as a reference399

(the Bladed model does not provide wind speed equivalent to Vb1). Confidence400

limits for the ADT and ACT are set to 0.75 and 0.92, respectively. Several401

positive alarms are triggered by noise during the ADT, and two positive alarms402
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Figure 14: Extreme operating wind gust detection.

during the ACT at 64.9s and 121.3s. The first ACT alarm does not remain to403

reach Tc, hence the detector rules it out as false. The second alarm remains to404

reach Tc, and thus the detector isolates it as an operating gust with a 19.8%405

model fit. A diagnostic action, i.e. open-loop control in this paper, can be406

applied at this point as described later in Section 5. Once the signature matrix407

is estimated, the model fit reaches 89%. This value of model fit is acceptable408

considering that turbulence intensity of 10% is not taken into account in the409

modelled wind gust.410

An extreme coherent gust is modelled as a sudden cosine-shaped increase411

from a mean wind speed of 14 m/s to 24 m/s, and the increase is subsequently412

sustained as depicted in Figure 15, in which the coherent gust starts at 73s. As413

with the operating gust depicted in Figure 14, the confirmation threshold for414

blade 1, Vb1, and µc,k are included in the figure, in addition to the hub wind415

speed that the Bladed model experiences as a reference. A positive ACT alarm416

is triggered at 74.88s and negative ACT alarms at 43.48s, 74.22s and 74.48s. A417

model fit of 5.86% is initially achieved and, in turn, increases reaching 82.3%.418

The detector can not improve the model fit further since the wind field model419

in the EKF is dependent on the mean wind speed, but the mean wind speed has420

not been updated; that is, the mean wind speed before and after the onset of the421

gust is different. The same diagnostic action as the one used for the operating422

wind gust, i.e. open-loop control, can be applied.423
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Figure 15: Extreme coherent wind gust detection.

5. Anomaly Compensation424

Once an anomaly is detected, a remedial action (compensation) can be ap-425

plied directly to the baseline controller to counteract the effects of the anomaly.426

The baseline controller used here is a standard commercial controller based427

on proportional-integral (PI) control (with modifications to incorporate fatigue428

reduction, anti-windup, etc.). It causes the turbine to track its design operat-429

ing curve defined on the torque/speed plane [28]; that is, a constant generator430

speed (i.e. 89 rad/s) is maintained in the lowest wind speeds; the Cpmax curve431

is tracked to maximise the aerodynamic efficiency in intermediate wind speeds;432

another constant generator speed (i.e. 157 rad/s) is maintained in higher wind433

speeds; and in above rated wind speed, the rated power of 2 MW is maintained434

by active pitching. Readers are referred to [15, 29] for further details on the435

baseline controller.436

The remedial action reported here is for wind shear and extreme operating437

gust. For wind shear, the baseline controller is modified to switch on IPC, which438

is a control technique for alleviating unbalanced rotor loads through pitching439

each blade separately. Additive corrections to the demanded pitch angle for each440

blade are determined by the controller acting on measurements of the BRBMs.441

This remedial action is only invoked when the anomalous behavior is detected,442

thus avoiding an excess of pitch activity; that is, without the anomaly detector,443

the IPC would need to be enabled at all times greatly increasing pitch activity444

and wear of the pitch actuator. For an operating gust, when the anomaly445

is detected, the baseline controller is modified to operate open-loop to apply446

maximum control actions.447
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Figure 16: Anomaly detection and compensation scheme.

To apply these remedial actions on the Bladed simulation, the anomaly de-448

tector and the Bladed model are run in parallel through a commercial gateway449

software interface. The gateway interface allows co-simulation between Bladed450

and Matlab/Simulink. The simulation set-up for control compensation is pre-451

sented in Figure 16. In this figure, the overall anomaly detection and compen-452

sation scheme reported throughout this paper is illustrated.453

In Figure 17 from 100 to 250s, wind shear causes increased loads on the454
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Figure 17: IPC compensating for wind shear.
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blades, i.e. My BRBM in Figure 17. At 250s, the anomaly detector detects an455

anomaly, i.e. wind shear, and thus switches on the IPC through the gateway456

interface as depicted in Figure 17a. Consequently, the magnitude of the oscilla-457

tion on each blade is significantly decreased, resulting in reduced loads on the458

blades, as demonstrated in Figure 17b. The lifespan of the blades would thus be459

increased as a result of the wind shear being detected in time and appropriately460

compensated.461

In the previous section, i.e. in Figure 14, the detection of an operating gust462

by the anomaly detector is described. Subsequent compensation of the gust is463

demonstrated in Figure 18 in this section. In Figure 14, the operating gust is464

detected at 121.3s. This allows the baseline controller to change from the normal465

control mode to open-loop control mode. It starts pitching at the maximum466

pitch rate until it is capped at 20◦ as demonstrated (in black) in Figure 18b in467

comparison to the situation in the normal control mode (in blue). Note that in468

the normal control mode, the open-loop control mode is not activated and the469

controller persists in following the standard control strategy described in [29];470

that is, the standard commercial controller is not modified. It is shown that471

the baseline controller can be modified (from normal control mode to open-472

loop control mode) in time to compensate for the anomaly. When the wind473

speed starts to decrease, the controller returns to the normal control mode,474

and as a result, rotor speed remains below the 12 % threshold as shown (in475

black) in Figure 18c, preventing the turbine from shutting down. Without the476

anomaly detection and compensation scheme, rotor speed exceeds the threshold477

as shown (in blue) in the figure. The individual turbine shut-downs not only478

cause reduction in the power production but also cascading shut-downs of nearby479

turbines, which needs to be avoided to protect the grid.480

The transition from the open-loop control back to the normal control mode481

can significantly be improved using appropriate techniques such as the one re-482

ported in [30], but this topic is beyond the scope of this paper.483
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Figure 18: Open-loop control compensating for gust (the Mexican hat).
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6. Conclusion and future work484

An anomaly detection and compensation scheme for a wind turbine is re-485

ported. By detecting anomalies and taking appropriate remedial actions in time,486

unnecessary shut-downs can be avoided, thereby improving energy production,487

and structural loads can be reduced, thus improving O&M costs.488

The detection approach is to create a map of the wind field at the rotor disc489

using an EKF that is primarily based on a wind field model and a 3 bladed490

aerodynamic model. The wind field model is modified to include the effect of491

dynamic inflow. The EKF developed in Matlab/Simulink, using the parameters492

of the 2MW exemplar Supergen wind turbine, accepts measurements, i.e. aero-493

dynamic torque and Mx and My BRBM, from the Bladed model of the same494

turbine. The modelling discrepancy between the two models provides a degree495

of model-plant mismatch to test the robustness of design. The EKF estimates496

states that are not measured or measurable. Simulation results demonstrate497

that the EKF closely tracks the measurements, coping with noise contamina-498

tion, and that the state estimates can successfully be observed for detecting499

various anomalies, including wind shear, mass imbalance and aerodynamic im-500

balance.501

The anomaly detector is further extended to detect extreme gusts prevent-502

ing the turbine from shutting down, which would have a number of adverse503

consequences. The detection is made by exploiting the EKF innovations error.504

Diagnostic features are added to the anomaly detector to isolate and com-505

pensate for some anomalies, i.e. wind shear and operating gust. Simulation506

results demonstrate that once wind shear or operating gust is detected, reme-507

dial action is successfully applied by IPC or open-loop control, respectively.508

The mitigation of the impact of anomalies by means of other control strate-509

gies is being investigated. To date, the model used in the EKF is accurate up510

to a frequency of 1P, but it could be extended to higher frequency to improve511

detection of additional anomalous scenarios, including yaw misalignment and512

wind veer.513
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A. Models for the Extended Kalman Filter521

The EFK requires a discrete state space equation as described in Equations522

(14) and (15), and the models or equations used for the state equations, f(xk−1),523

and the output equations, g(xk), are described here.524
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Equations used to constitute f(xk−1) and their derivation are summarised525

as follows.526

1. The point wind speed model, Vd(s), used to produce Vd1, is combined with
Wa(s) as follows (refer to Equation (7) and Figure 2):

F1(s) = Vd(s)Wa(s) (A.1)

Vp = F1(s)ξ0 (A.2)

Vp is one of the states, xk, to be estimated. Now the input for the model527

F1(s) is Gaussian noise, which is also the required input for the EKF as528

shown in Equation (14).529

2. F1(s) is converted into the state space form and subsequently discretised,530

becoming F1(z−1) (order of 4), to be in the suitable format for the EKF.531

Using this model, the EKF estimates Vp.532

3. Steps 1 and 2 are repeated for Wb(s) and Wc(s) to give F2(z−1) and533

F3(z−1) (both order of 7), respectively. Using these models, the EKF534

estimates Va1 and Vb1.535

4. The terms, (a1 +Va1)sin(θ) and (b1 +Vb1)cos(θ), in Equation (1) are used536

to estimate the states, Va and Vb (see Figure 2). Va1 and Vb1 are estimated537

in Step 3 above, and θ, a1 and b1 are also states estimated by the EKF538

as reported in Section 3. These equations are used for each blade.539

5. The dynamic inflow model (Equation (33)) is discretised and subsequently540

used by the EKF to estimate VR.541

6. Equation (36) (which is a function of VR from Step 4) is used to estimate542

V̂s.543

Equations (11), (12) and (13) constitute the output equations, g(xk). Equa-544

tions (11) and (12) are used for each blade, hence the number output equations545

used by the EKF is 7.546
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