Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Estimating heart rate and rhythm via 3D motion tracking in depth video

Yang, Cheng and Cheung, Gene and Stankovic, Vladimir (2017) Estimating heart rate and rhythm via 3D motion tracking in depth video. IEEE Transactions on Multimedia. pp. 1-13. ISSN 1520-9210 (In Press)

[img]
Preview
Text (Yang-Cheung-Stankovic-TM-2017-Estimating-heart-rate-and-rhythm-via-3D-motion-tracking)
Yang_Cheung_Stankovic_TM_2017_Estimating_heart_rate_and_rhythm_via_3D_motion_tracking.pdf - Accepted Author Manuscript

Download (5MB) | Preview

Abstract

Low-cost depth sensors, such as Microsoft Kinect, have potential for non-intrusive, non-contact health monitoring that is robust to ambient lighting conditions. However, captured depth images typically suer from low bit-depth and high acquisition noise, and hence processing them to estimate biometrics is dicult. In this paper, we propose to capture depth video of a human subject using Kinect 2.0 to estimate his/her heart rate and rhythm (regularity); as blood is pumped from the heart to circulate through the head, tiny oscillatory head motion due to Newtonian mechanics can be detected for periodicity analysis. Specifically, we first restore a captured depth video via a joint bit-depth enhancement / denoising procedure, using a graph-signal smoothness prior for regularization. Second, we track an automatically detected head region throughout the depth video to deduce 3D motion vectors. The detected vectors are fed back to the depth restoration module in a loop to ensure that the motion information in two modules are consistent, improving performance of both restoration and motion tracking in the process. Third, the computed 3D motion vectors are projected onto its principal component for 1D signal analysis, composed of trend removal, band-pass filtering, and wavelet-based motion denoising. Finally, the heart rate is estimated via Welch power spectrum analysis, and the heart rhythm is computed via peak detection. Experimental results show accurate estimation of the heart rate and rhythm using our proposed algorithm as compared to rate and rhythm estimated by a portable oximeter.