Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Maximum exergy input rate from a hot stream in solar driven refrigerants

Vargas, José V.C. and Fleming, J.S. and Parise, José A.R. (2001) Maximum exergy input rate from a hot stream in solar driven refrigerants. International Journal of Energy Research, 25 (9). pp. 751-767. ISSN 0363-907X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The authors believe that reducing the size of solar-driven refrigerators and air conditioning systems will make them more attractive to potential users. This paper presents a contribution to understanding the behaviour of such systems with a view to determining the manner in which refrigeration rate, mass flows and heat transfer areas are related. The intention is to make possible the identification of preliminary design rules. The basic thermodynamic problem of how to obtain maximum exergy input rate in a solar-driven refrigerator is considered. The existence of an optimal refrigerant flow rate for maximum refrigeration is investigated. The analysis proceeds by relating the entropy generation rate, the physical and operating parameters, and the constraints of the system, through well-established heat transfer relationships. Finally, a thermodynamic analysis determines the optimal characteristics that lead to minimum entropy generation. The second law efficiency is identified as the appropriate figure of merit for the thermodynamic optimum.