Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The development of a ducted wind turbine simulation model

Grant, A.D. and Kelly, N.J. (2003) The development of a ducted wind turbine simulation model. In: Proceedings of the 8th International Building Performance Simulation Association Conference. International Building Performance Simulation Association, pp. 407-414.

[img]
Preview
PDF (strathprints005968.pdf)
strathprints005968.pdf

Download (270kB) | Preview

Abstract

Embedded generation has been described as a "paradigm shift" in the way in which electricity is produced, with the focus of power production shifting away from large centralised generation plants to production of heat and power close to the point of use. An emerging technology that may play a part in the evolution of this new paradigm is the ducted wind turbine (DWT). Up to this point, wind energy has not played a major role in embedded generation for the built environment. However, the development of these small micro turbines that can be integrated into the building fabric, opens up the possibility of utilising the differential pressures that occur due to airflow around buildings for the purpose of local power production. This paper describes recent work to develop and test a simple mathematical model of a Ducted Wind Turbine and its integration within the various technical domains of a building simulation tool. Specifically, the paper will describe: a) the concept of the ducted wind turbine; b) the development of the mathematical model; c) the integration of the model into a building simulation tool. The paper will conclude with a case study in which the simulation model will be used to analyse of the likely power output from a building design incorporating ducted wind turbines within the facade.