Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

The vibration of prestressed orthotropic cylindrical shells conveying fluid

Zhang, Y.L. and Reese, J.M. and Gorman, D. (2001) The vibration of prestressed orthotropic cylindrical shells conveying fluid. In: Proceedings of the ASME Pressure Vessels and Piping Symposium on Flow-Induced Vibration. ASME, pp. 191-198. ISBN 0791841898

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A general approach to modelling the vibration of prestressed thin cylindrical shells conveying fluid is presented. The steady flow of fluid is described by the classical potential flow theory, and the motion of the shell is represented by Sanders' theory of thin shells. A strain-displacement relationship is deployed to derive the geometric stiffness matrix due to the initial stresses caused by hydrostatic pressure. Hydrodynamic pressure acting on the shell is developed through dynamic interfacial coupling conditions. The resulting equations governing the motion of the shell and fluid are solved by a finite element method. This model is subsequently used to investigate the small-vibration dynamic behaviour of prestressed thin cylindrical shells conveying fluid. It is validated by comparing the computed natural frequencies, within the linear region, with existing reported experimental results. The influence of initial tension, internal pressure, fluid flow velocity and the various geometric properties is also examined.