Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids

Zhang, Y.L. and Gorman, Daniel G. and Reese, J.M. (2001) A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids. Journal of Sound and Vibration, 245 (1). pp. 93-112. ISSN 0022-460X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a method for the dynamic analysis of initially tensioned orthotropic thin-walled cylindrical tubes conveying steady fluid flow, based on Sanders' non-linear theory of thin shells and the classical potential flow theory. The method is relatively straightforward, using a hydrodynamic pressure formulation derived from the velocity potential, a dynamic coupling condition at the fluid-structure interface and two-noded frustum elements to assess the dynamic behaviour of these tube/fluid systems accurately. A non-linear strain-displacement relationship is also deployed to derive the geometric stiffness matrix due to the initial stresses and hydrostatic pressures. The equations of motion for the tube and fluid are solved by a finite element method, and this is validated by comparing the natural frequencies obtained with other published results. The influence of material properties, fluid flow velocities and initial axial tensions on the natural frequencies is then illustrated and discussed.