Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids

Zhang, Y.L. and Gorman, Daniel G. and Reese, J.M. (2001) A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids. Journal of Sound and Vibration, 245 (1). pp. 93-112. ISSN 0022-460X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a method for the dynamic analysis of initially tensioned orthotropic thin-walled cylindrical tubes conveying steady fluid flow, based on Sanders' non-linear theory of thin shells and the classical potential flow theory. The method is relatively straightforward, using a hydrodynamic pressure formulation derived from the velocity potential, a dynamic coupling condition at the fluid-structure interface and two-noded frustum elements to assess the dynamic behaviour of these tube/fluid systems accurately. A non-linear strain-displacement relationship is also deployed to derive the geometric stiffness matrix due to the initial stresses and hydrostatic pressures. The equations of motion for the tube and fluid are solved by a finite element method, and this is validated by comparing the natural frequencies obtained with other published results. The influence of material properties, fluid flow velocities and initial axial tensions on the natural frequencies is then illustrated and discussed.