Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

A comparative study of axisymmetric finite elements for the vibration of thin cylindrical shells conveying fluid

Zhang, Yong Liang and Reese, Jason M. and Gorman, Daniel G. (2002) A comparative study of axisymmetric finite elements for the vibration of thin cylindrical shells conveying fluid. International Journal for Numerical Methods in Engineering, 54 (1). pp. 89-110. ISSN 0029-5981

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A comparative study of the relative performance of several different axisymmetric finite elements, when applied to the dynamic problem of thin cylindrical shells conveying fluid, is presented. The methods used are based on (1) the Sanders' theory of thin shells and the potential flow theory, and (2) the theory of elasticity and the Euler equations. The elements studied are: linear, paralinear, parabolic and cubilinear. Extensive comparison with experiment is carried out for the free vibration of cylindrical shells in the absence of, and containing, quiescent and flowing fluid. The analysis of the relative competence of these elements is presented for shell length-to-radius ratios 1.95L/R32, shell radius-to-thickness ratios 10R/h375 and boundary conditions: clamped-clamped, clamped-free and simply supported. We show that natural frequencies of thin cylindrical shells in the absence of, and containing, quiescent and flowing fluid can be assessed accurately when using two- and eight-noded elements, and the latter are also applicable to the dynamic problem of thick cylindrical shells.

Item type: Article
ID code: 5963
Keywords: vibration, thin cylindrical shell conveying fluid, finite element method, axisymmetric finite element, natural frequency, dynamic analysis, Mechanical engineering and machinery, Applied Mathematics, Engineering(all), Numerical Analysis
Subjects: Technology > Mechanical engineering and machinery
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 02 May 2008
    Last modified: 04 Sep 2014 15:10
    URI: http://strathprints.strath.ac.uk/id/eprint/5963

    Actions (login required)

    View Item